• Title/Summary/Keyword: 3-dimensional temporal behavior.

Search Result 15, Processing Time 0.029 seconds

The measurement of three-dimensional temporal behavior according to the pressure in the plasma display panel (플라즈마 디스플레이 패널의 압력별 3차원 시간 분해 측정)

  • Kim, Son-Ic;Choi, Hoon-Young;Lee, Seok-Hyun;Lee, Seung-Gol
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1628-1630
    • /
    • 2002
  • In this paper, we measured 3-dimensional temporal behavior of the light emitted from discharge cell of plasma display panel(PDP) as a function of the pressure using the scanned point detecting system. The detected light signal through the PM tube is sent on the oscilloscope and oscilloscope which is connected to PC with GPIB. The whole system is controlled by a PC. From the temporal behavior results, we could analyze the discharge behavior of panel with Ne-Xe(4%) mixing gas and 300torr, 400torr, 500torr pressure. The top view of panel shows that the discharge moves from inner edge of cathode electrode to outer cathode electrode forming arc type. At the 300torr, initial emission time is very fast. The side view of panel shows that the light is detected up to $150{\mu}m$ height of barrier rib. In the panel of 300torr, emission distribution is wider than the others.

  • PDF

The three-dimensional temporal behavior measurement of light emitted from plasma display panel by the Scanned Point-Detecting System (Scanned Point-Detecting System을 이용한 플라즈마 디스플레이 패널에서 방출되는 광의 3차원 시간 분해 측정)

  • 최훈영;이석현;이승걸;김준엽
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.559-563
    • /
    • 2002
  • We measure the 3-dimensional temporal behavior of the light emitted from the discharge cell of a plasma display panel (PDP) by using a scanned point detecting system. The light signal detected by a PM tube is sent to the oscilloscope, and the oscilloscope is connected to a PC with GPIB. From the resultant temporal behaviors, we could analyze the discharge characteristics of the panel with a Ne-Xe (4%) mixing gas at a 400 torr pressure. The top view of the panel shows that discharge moves from the inner edge of the cathode electrode to the outer cathode electrode, forming an arc shape. The side view of the panel shows that the light is detected up to 150 $\mu\textrm{m}$ up the barrier rib. After a trigger pulse is applied, peak intensity is detected at 730 ns and peak intensity position is located at the center of the ITO electrodes.

The Measurement of Three-Dimensional Temporal Behavior According to the Pressure in the Plasma Display Panel (플라즈마 디스플레이 패널에서 압력에 3차원 시간 분해 측정)

  • 최훈영;이석현;이승걸
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.476-480
    • /
    • 2003
  • In this paper, we have performed 3-dimensional time-resolving measurement of the Ne light emitted from the cell of plasma display panel(PDP) as a function of the pressure using the scanned point detecting system. From the temporal behavior results, we could analyze the discharge behavior of panel with Ne-Xe(4%) mixing gas and 300 torr, 400 torr and 500 torr pressure. At the top view of panel, the discharge of 300 torr panel starts at the 634 ns and ends at the 722 ns. The emission duration time is about 90 ns. The discharge of 400 torr panel starts at the 682 ns and ends at the 786 ns. the emission duration time is about 100 ns. Also, the discharge of 500 torr panel starts at the 770 ns and ends at the 826 ns. the emission duration time is about 56 ns. The discharge moves from inner edge of cathode electrode to outer cathode electrode forming arc type. In the side view of 300 torr, 400 torr and 500 torr an emission shows that the light is detected up to 180${\mu}{\textrm}{m}$, 150${\mu}{\textrm}{m}$ and 70${\mu}{\textrm}{m}$ height of barrier rib and the emission distribution of the 300 torr is wider than 400 torr, 500 torr.

Human Activity Recognition Based on 3D Residual Dense Network

  • Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1540-1551
    • /
    • 2020
  • Aiming at the problem that the existing human behavior recognition algorithm cannot fully utilize the multi-level spatio-temporal information of the network, a human behavior recognition algorithm based on a dense three-dimensional residual network is proposed. First, the proposed algorithm uses a dense block of three-dimensional residuals as the basic module of the network. The module extracts the hierarchical features of human behavior through densely connected convolutional layers; Secondly, the local feature aggregation adaptive method is used to learn the local dense features of human behavior; Then, the residual connection module is applied to promote the flow of feature information and reduced the difficulty of training; Finally, the multi-layer local feature extraction of the network is realized by cascading multiple three-dimensional residual dense blocks, and use the global feature aggregation adaptive method to learn the features of all network layers to realize human behavior recognition. A large number of experimental results on benchmark datasets KTH show that the recognition rate (top-l accuracy) of the proposed algorithm reaches 93.52%. Compared with the three-dimensional convolutional neural network (C3D) algorithm, it has improved by 3.93 percentage points. The proposed algorithm framework has good robustness and transfer learning ability, and can effectively handle a variety of video behavior recognition tasks.

The 3- dimensional analysis for the discharge of PDP according to the pulse width of voltage applied to the address electrode during sustain period (Sustain 구간중 Address 전극에 인가되는 전압 펄스 폭에 따른 3차원 방전형상 분석)

  • Kwon, Hyoung-Seok;Choi, Hoon-Young;Lee, Seung-Gol;Lee, Seok-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1830-1833
    • /
    • 2002
  • We measured 3-dimensional temporal behavior of the light emitted from AC plasma display panel(PDP) at various auxiliary voltage pulse width supplied to the address electrode in sustain period using scanned point detecting system. In the case of applying an auxiliary address voltage pulse, the light emission starts at the inner edges of the cathode so the larger discharge volume toward address electrode can be obtained compared with the normal sustain discharge. Especially, when the auxiliary voltage pulse width is the $2{\mu}s$, the maximum luminance and long emission time can be obtained.

  • PDF

A Study on High Reynolds Number Flow in Two-Dimensional Closed Cavity (2차원 밀폐 캐비티의 고레이놀즈수 흐름에 관한 연구)

  • 최민선;송치성;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.101-109
    • /
    • 1996
  • Two-dimensional lid-driven closed flows within square cavity were studied numerically for four Reynolds numbers : $10^4$, 3$\times10^4$, 5$\times10^4$ and 7.5$\times10^4$. A convective difference scheme to maintain the same spatial accurary by irregular grid correction is adopted by applying the interior division principle. Grid number is $80\times80$and its minimum size is about 1/400 of the cavity height. At Re=$10^4$, periodic migration of small eddies appearing in corner separation region and its temporal sinusoidal fluctuation are represented. At three higher Reynolds numbers(3$\times10^4$, 5$\times10^4$ and 7.5$\times10^4$), an organizing structure of four consecutive vorticles at two lower corners is revealed from time-mean flow patterns. But, instantaneous flow characteristics show very random unsteady fluctuation mainly due to the interaction between rotating shed vortices and stationary eddies within the corners.

  • PDF

Cooperative Path Planning of Dynamical Multi-Agent Systems Using Differential Flatness Approach

  • Lian, Feng-Li
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.401-412
    • /
    • 2008
  • This paper discusses a design methodology of cooperative path planning for dynamical multi-agent systems with spatial and temporal constraints. The cooperative behavior of the multi-agent systems is specified in terms of the objective function in an optimization formulation. The path of achieving cooperative tasks is then generated by the optimization formulation constructed based on a differential flatness approach. Three scenarios of multi-agent tasking are proposed at the cooperative task planning framework. Given agent dynamics, both spatial and temporal constraints are considered in the path planning. The path planning algorithm first finds trajectory curves in a lower-dimensional space and then parameterizes the curves by a set of B-spline representations. The coefficients of the B-spline curves are further solved by a sequential quadratic programming solver to achieve the optimization objective and satisfy these constraints. Finally, several illustrative examples of cooperative path/task planning are presented.

A Dangerous Situation Recognition System Using Human Behavior Analysis (인간 행동 분석을 이용한 위험 상황 인식 시스템 구현)

  • Park, Jun-Tae;Han, Kyu-Phil;Park, Yang-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.345-354
    • /
    • 2021
  • Recently, deep learning-based image recognition systems have been adopted to various surveillance environments, but most of them are still picture-type object recognition methods, which are insufficient for the long term temporal analysis and high-dimensional situation management. Therefore, we propose a method recognizing the specific dangerous situation generated by human in real-time, and utilizing deep learning-based object analysis techniques. The proposed method uses deep learning-based object detection and tracking algorithms in order to recognize the situations such as 'trespassing', 'loitering', and so on. In addition, human's joint pose data are extracted and analyzed for the emergent awareness function such as 'falling down' to notify not only in the security but also in the emergency environmental utilizations.

Dynamic PIV Measurement of Swirl Flow in a PC Fan

  • ARAMAKI Shinichiro;HAYAMI Hiroshi
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.41-45
    • /
    • 2004
  • The dynamic particle image velocimetry (PIV) is consisted of a high frequency pulse laser, high speed cameras and a timing controller. The three velocity components of flow downstream of an axial flow fan for PC cooling system are measured using the dynamic PIV system. An Axial flow fan has seven blades of 72 mm in diameter. The rotating speed is 1800 rpm. The downstream flow is visualized by smoke particles of about $0.3-1\;{\mu}m$ in diameter. The three-dimensional instantaneous velocity fields are measured at three downstream planes. The swirl velocity component was diffused downstream and the change in time-mean vorticity distribution downstream was also discussed. The spatio-temporal change in axial velocity component with the blades passing is recognized by the instantaneous vector maps. And the dynamic behavior of vorticity moving with the rotating blades is discussed using the unsteady vorticity maps.

  • PDF

Parallel computation for debonding process of externally FRP plated concrete

  • Xu, Tao;Zhang, Yongbin;Liang, Z.Z.;Tang, Chun-An;Zhao, Jian
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.803-823
    • /
    • 2011
  • In this paper, the three dimensional Parallel Realistic Failure Process Analysis ($RFPA^{3D}$-Parallel) code based on micromechanical model is employed to investigate the bonding behavior in FRP sheet bonded to concrete in single shear test. In the model, the heterogeneity of brittle disordered material at a meso-scale was taken into consideration in order to realistically demonstrate the mechanical characteristics of FRP-to-concrete. Modified Mohr-coulomb strength criterion with tension cut-off, where a stressed element can damage in shear or in tension, was adopted and a stiffness degradation approach was used to simulate the initiation, propagation and growth of microcracks in the model. In addition, a Master-Slave parallel operation control technique was adopted to implement the parallel computation of a large numerical model. Parallel computational results of debonding of FRP-concrete visually reproduce the spatial and temporal debonding failure progression of microcracks in FRP sheet bonded to concrete, which agrees well with the existing testing results in laboratory. The numerical approach in this study provides a useful tool for enhancing our understanding of cracking and debonding failure process and mechanism of FRP-concrete and our ability to predict mechanical performance and reliability of these FRP sheet bonded to concrete structures.