• 제목/요약/키워드: 3-dimensional packing

검색결과 39건 처리시간 0.021초

콜로이드 입자의 3차원적인 적층에 대한 컴퓨터 시뮬레이션 (Computer Simulation of Three Dimensional Particle Packing)

  • 김종철
    • 한국세라믹학회지
    • /
    • 제34권9호
    • /
    • pp.979-985
    • /
    • 1997
  • The three-dimensional particle packing process is simulated using Lahey FORTRAN 90 as a programming language running on a personal computer. Particle clusters constructed with rearrangement which occurs during packing have higher average coordination number and packing density than particle clusters rearranged after packing. Rearranging particles can not completely block other particles from entering pore volume in 3-dimensional packing unlike in 2-dimensional packing. It is found that there is a region of instability where lower packing density results from the destruction of the ordered packing.

  • PDF

Packing placement method using hybrid genetic algorithm for segments of waste components in nuclear reactor decommissioning

  • Kim, Hyong Chol;Han, Sam Hee;Lee, Young Jin;Kim, Dai Il
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3242-3249
    • /
    • 2022
  • As Kori unit 1 is undergoing the decommissioning process, estimating the disposal amount of waste from the decommissioned nuclear reactor has become one of the challenging issues. Since the waste disposal amount estimation depends on the packing of the waste, it is highly desirable to optimize the waste packing plan. In this study, we developed an efficient scheme for packing waste component segments. The scheme consists of 1) preparing three-dimensional models of segments, 2) orienting each segment in such a way to minimize the bounding box volume, and 3) applying hybrid genetic algorithm to pack the segments in the disposal containers. When the packing solution converges in the algorithm, it comes up with the number of containers used and the placement of segments in each container. The scheme was applied to Kori-1 reactor pressure vessel. The required number of containers calculated by the developed scheme was 24 compared to 42 that was the estimation of the prior packing plan, resulting in disposal volume savings by more than 40%. The developed method is flexible for applications to various packing problems with waste segments from different cutting options and different sizes of containers.

3차원 전극을 사용한 Rhodamine B의 전기분해에 미치는 운전인자의 영향 (Effect of Operating Parameters on Electrochemical Degradation of Rhodamine B by Three-dimensional Electrode)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제35권4호
    • /
    • pp.295-303
    • /
    • 2009
  • A simulated wastewater containing the dye Rhodamine B (RhB) was electrolytically treated using a three-dimensional electrode reactor equipped with granular activated carbon (GAC) as particle electrode. The effect of type of packing material (GAC, ACF, Nonwoven fabric fiber coated with activated carbon), amounts of GAC packing (25-100 g), current (0.5-3 A) and electrolyte concentration (0.5-3 g/l) was evaluated. Experimental results showed that performance for RhB decolorization of the 3 three-dimensional electrodes lie in: GAC > Nonwoven fabric fiber > ACF. When considered RhB decolorization, oxidants concentration and electric power, optimum GAC dosage was 50 g. Generated concentration of 3 oxidants ($ClO_2$, free Cl, $H_2O_2$) was increased with increase of applied current, however optimum current for RhB degradation was 2.5 A. The oxidants concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.5 g/l.

의치상용 레진의 전입 방법에 따른 중합체적변화와 굴곡강도에 관한 연구 (DIMENSIONAL CHANGE AND FLEXURAL STRENGTH IN COMPLETE DENTURES FABRICATED BY INJECTION MOLDING AND CONVENTIONAL COMPRESSION PROCESSING)

  • 최훈달;권긍록;김형섭;최대균
    • 대한치과보철학회지
    • /
    • 제43권4호
    • /
    • pp.478-486
    • /
    • 2005
  • Statement of problem : Fracture and dimensional change of an acrylic resin denture are a rather common occurrence. Purpose : The purpose of this study was to compare differences in dimensional changes and flexural strength of separate maxillary complete dentures after immediate deflasking by injection molding and conventional compression processing. Material and method: To evaluate dimensional stability, the maxillary dentures were fabricated by using different materials and methods. Lucitone 199(Dentsply Trubyte. york, pennsylvania, USA) and Vertex(Dentimex, zeist, Netherlands) were used as materials. Compression and injection packing methods were used as processing methods. The impression surface of the dentures was measured by 3D Scann-ing System(PERCEPTRON USA) and overlapped original impression surface of the master cast. To evaluate flexural strength, resin specimens were made according to the different materials, powder/liquid ratio and processing methods. Flexural strength of the complete resin specimens (64mm$\times$10mm$\times$3.3mm) were measured by INSTRON 4467. (INSTRON, England) The data was analyzed by ANOVA, t-test and Tukey test. (p<.05 level of significance) Result: The results were as follows 1. There was no significant differences between master model and denture base for each group in overall dimensional changes. 2. Palatal area was more stable than flange or alveolar area in dimensional stability. but. there was no significant differences among each area. 3. Materials and power/liquid ratio had an effect on flexural strength. (P<.05) Especially materials was most effective. (P<.05) 4. Lucitone 199(powder/liquid ratio followed by manufacturer's direction) showed higher flexural strength than Vertex. Conclusion : Dimensional stability or flexural strength are affected by materials rather than packing techniques.

신속시작작업에서 2차원 단면데이터를 이용한 3차원 물체의 최적자동배치를 위한 알고리즘의 개발 (Optimal 3-D Packing using 2-D Slice Data for Multiple Parts Layout in Rapid Prototyping)

  • 허정훈;이건우;안재홍
    • 한국CDE학회논문집
    • /
    • 제2권3호
    • /
    • pp.195-210
    • /
    • 1997
  • In Rapid Prototyping process, the time required to build multiple prototype parts can be reduced by packing several parts optimally in a work volume. Interactive arrangement of the multiple parts is a tedious process and does not guarantee the optimal placement of all the parts. In this case, packing is a kind of 3-D nesting problem because parts are represented by STL files with 3-D information. 3-D nesting is well known to be a problem requiring an intense computation and an efficient algorithm to solve the problem is still under investigation. This paper proposes that packing 3-D parts can be simplified into a 2-D irregular polygon nesting problem by using the characteristic of rapid prototyping process that the process uses 2-dimensional slicing data of the parts and that slice of the STL parts are composed of polygons. Our algorithm uses no-fit-polygon (NFP) to place each slice without overlapping other slices in the same z-level. The allowable position of one part at a fixed orientation for given parts already packed can be determined by obtaining the union of all NFP's that are obtained from each slice of the part. Genetic algorithm is used to determine the order of parts to be placed and orientations of each part for the optimal packing. Optimal orientation of a part is determined while rotating it about the axis normal to the slice by finite angles and flipping upside down. This algorithm can be applied to any rapid prototyping process that does not need support structures.

  • PDF

3D 프린터를 이용한 임펠러 출력물의 치수 특성 (Dimensional Characteristics of Impeller Output Using 3D Printers)

  • 공정리;김해지
    • 한국기계가공학회지
    • /
    • 제21권9호
    • /
    • pp.56-62
    • /
    • 2022
  • This study analyzed the output precision of 3D printing methods. The inner impeller of the centrifugal compressor was printed in as a sheet with 100% packing density using two methods: field deposition modelling and stereolithography. Dimensional differences between the initial CAD and printed models were evaluated using a 3D scanner. To investigate the dimensional characteristics of the 3D printed impeller, 3D dimension analysis and point dimension analysis were performed. The point dimension analysis was divided into 3D and 2D for comparative analysis.

우선순위를 고려한 컨테이너 3차원 적재문제 (Three-Dimensional Container Packing Problem with Freight Priority)

  • 배민주;최세경;김환성
    • 한국항해항만학회지
    • /
    • 제28권6호
    • /
    • pp.531-539
    • /
    • 2004
  • 본 논문에서는 다양한 종류와 다양한 크기의 화물에 대해 3차원 적재 방법으로서 휴리스틱 기법을 이용한 해법을 제안하였다. 먼저, 컨테이너 비용을 적재비용, 수송비용 및 처리비용의 합으로 나타내었으며, 화물 간 우선순위 및 화물 내에서의 개수 간 우선순위를 적용하였다. 주어진 화물을 적재 공간 및 중량을 만족하면서 전체 컨테이너 비용을 최소화하는 컨테이너 종류 및 개수의 순위를 산출하였으며, 이때 컨테이너 개수는 사용자의 입장에서 1∼10순위 중 하나를 선택할 수 있도록 하였다. 적재 시 화물의 팔레타이저 및 디팔레타이져로서 컨테이너 내의 공간 이용률을 극대화시켰다. 마지막으로 컨테이너의 무게 균등화를 고려하여 취급중의 화물의 무게 불균등으로 인한 화물의 손상을 방지하였다. 제안된 휴리스틱 기법을 프로그램 언어를 이용한 시뮬레이션을 통해 그 유효성을 증명하였다.

컨테이너 3차원 적재문제 (Three-Dimensional Container Packing Problem)

  • 배민주;최세경;김환성
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2003년도 춘계공동학술대회논문집
    • /
    • pp.242-248
    • /
    • 2003
  • 본 논문에서는 다양한 종류와 다양한 크기의 화물에 대해 3차원 적재하는 방법으로서 휴리스틱 기법을 이용한 해법을 제안하였다. 먼저, 컨테이너 비용을 적재비용, 수송비용 및 처리비용의 합으로 나타내며. 화물간 우선순위 및 화물 내에서의 개수 간 우선순위를 적용하였다. 주어진 화물을 적재 공간 및 중량을 만족하면서 위의 컨테이너 비용을 최소화하는 컨테이너 종류 및 개수를 산출하였으며, 적재 시 화물의 팔레타이져 및 디팔레타이져로서 컨테이너 내의 공간 이용률을 극대화시켰다. 마지막으로 화물의 무게 균등화를 고려하여 취급중의 화물의 손상방지를 행하였다.

  • PDF

의치의 중합방법에 따른 변화에 대한 연구 (A Study on the Dimensional Changes through the Curing Method of Denture)

  • 이재열
    • 대한치과기공학회지
    • /
    • 제9권1호
    • /
    • pp.67-72
    • /
    • 1987
  • This experimental study presented the study on the dimensional changes of occuring for the denture curing methods. The method is as follows: 1. The master die was made of wax. 2. The Silicon Rubber Mold was made into the same 80 casts. 3. The 80 Wax Plate were made of using the Base Plate Wax. 4. Flasking, Wax-wash, & Resin-packing were performed by the general procedures. 5. The curing method is performed through the four curing methods. (A, B, C, D). Table 2 shows the dimensional change after a day. Table 3 shows the dimensional change after soaking for 30 days in water of the degree of 36 Centigrade. As a result, the A curing method is the most denture curing.

  • PDF