• 제목/요약/키워드: 3-axis force sensor

검색결과 56건 처리시간 0.021초

무급유식 공기압축기 구동을 위한 영구자석 동기 모터의 센서리스 속도제어 (Sensor-less Speed Control of PMSM for Driving Oil-free Air Compressor)

  • 김민호;양오;김윤현
    • 반도체디스플레이기술학회지
    • /
    • 제14권3호
    • /
    • pp.45-50
    • /
    • 2015
  • This paper suggests the sensor-less speed control of PMSM (Permanent Magnet Synchronous Motor) without the position sensor of oil-free air compressor. It estimated d and q axis back electro motive force using Back-EMF (Electro motive Force) observer to control sensor-less speed of PMSM. Also it used the method that tracks the information of rotor position and speed using PLL (Phase Locked Loop) based on estimated d and q axis Back-EMF. The sensor-less speed control of PMSM for oil air compressor application is carried out with the introduced rotor position and speed tracking method. In this paper, the experimental characterization of the sensor-less drive is provided to verify the accuracy of the estimated position and the performance of sensor-less control is analyzed by results obtained from the experiment. Moreover, the potential of PMSM sensor-less drive in industrial application such as compressor drive is also examined.

힘/모멘트 측정기능을 갖는 6축 로봇 베이스 플랫폼 개발 (Development of a 6-axis Robotic Base Platform with Force/Moment Sensing)

  • 정성훈;김한성
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.315-324
    • /
    • 2019
  • This paper present a novel 6-axis robotic base platform with force/moment sensing. The robotic base platform is made up of six loadcells connecting the moving plate to the fixed plate by spherical joints at the both ends of loadcells. The statics relation is derived, the robotic base platform prototype and the loadcell measurement system are developed. The force/moment calibrations in joint and Cartesian spaces are performed. The algorithm to detect external force applied at a working robot is derived, and using a 6-DOF robot mounted on the robotic base platform, force/moment measurement experiments have been performed.

3축 그라인딩 로봇을 이용한 자동 경로 생성 및 능동 컴플라이언스 힘 제어 (Auto Path Generation and Active Compliance Force Control Using 3-axis Grinding Robot)

  • 추정훈;김수호;이상범;김정민
    • 제어로봇시스템학회논문지
    • /
    • 제12권11호
    • /
    • pp.1088-1094
    • /
    • 2006
  • In this paper, an auto path generation and an active compliance grinding control using 3-axis farce sensor are presented. These control algorithms enable the grinding robot to follow unknown path of various workpiece shape pattern. The robot is able to go grinding along unknown paths by position controller managing tangential direction angle and cutting speed, with only information about the start position and the end position. Magnitude and direction of normal force are calculated using force data that go through low pass filter. Moreover, normal and tangential directions are separated for force control and velocity control, respectively.

로보틱 토노메트리 센서를 이용한 요골 동맥 파형 정밀 측정 방법 (Precise Measurement Method of Radial Artery Pulse Waveform using Robotic Applanation Tonometry Sensor)

  • 김영민
    • 센서학회지
    • /
    • 제26권2호
    • /
    • pp.135-140
    • /
    • 2017
  • In this paper, a novel measurement method of radial artery pulse waveform using robotic applanation tonometry (RAT) was present to reduce the errors by the pressing direction of the vessel. The RAT consisted of an array of pressure sensors and 2-axis tilt sensor, which was attached to the universal joint with a linear spring and five-DOF robotic manipulator with a one-axis force sensor. Using the RAT mechanism, the pulse sensor could be manipulated to perpendicularly pressurize the radial artery. A pilot experimental result showed that the proposed mechanism could find the optimal pressurization angles of the pulse sensor within ${\pm}3^{\circ}$standard deviations. Coefficient values of variation of maximum pulse peaks extracted from the pulse waveforms were 4.692, 6.994, and 11.039 % for three channels with the highest magnitudes. It is expected that the proposed method can be helpful to develop more precise tonometry system measuring the pulse waveform on the radial artery.

힘 센서를 이용한 CMM용 프로브 개발을 위한 연구 (A Study on the Development of the CMM Probe using Force-Sensor)

  • 송광석;권기환;박재준;조남규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.411-415
    • /
    • 2002
  • In this paper, a mechanical probe for CMM (Coordinate Measuring Machine) with a three-axis force-sensing unit is proposed, which is capable of measuring an actual contact position without the lobbing effect and the pre-travel error. The force-sensing unit detects the external force, which is act on the stylus of CMM during the measuring process. Thus, the contact point of the stylus of CMM can be estimated ken the direction of measured force components. Based on the structural analysis of the proposed CMM probe, the transformation matrix is derived and calibrated so that it shows linear relationships between the estimated force components from the output voltages and the real input forces. And, the relationships are verified through the computer simulation. The results show that the proposed mechanical probe is very useful fur detecting the contacting force components on measuring process of CMM.

  • PDF

햅틱기술을 이용한 뇌졸중환자의 원통물체잡기 힘측정장치 개발 (Development of Cylindrical-object Grasping Force Measuring System with Haptic Technology for Stroke's Fingers)

  • 김현민;김갑순
    • 한국정밀공학회지
    • /
    • 제30권3호
    • /
    • pp.300-307
    • /
    • 2013
  • This paper describes the development of a cylindrical-object grasping force measuring system applied haptic technology to measure the grasping force of strokes patients' fingers and other patients' paralyzed fingers. Because the cylindrical-object and the force measuring device of the developed cylindrical-object grasping force measuring system are connected with the electrical wires, patients and their families have difficulty not only measuring the patients' grasping force using the system but also knowing their rehabilitation extent when using it. In this paper, the cylindrical-object grasping force measuring system applied haptic technology was developed, and the cylindrical-object grasping force measuring device sends data to the rehabilitation evaluating system applied haptic technology by wireless communication. The grasping force measurement characteristic test using the system was carried out, and it was confirmed that the rehabilitation extent of the patients' paralyzed fingers and normal people fingers can be evaluated.

스트레인게이지 타입 회전형 공구동력계 개발과 3축 정적 하중 검증 (Development of Strain-gauge-type Rotational Tool Dynamometer and Verification of 3-axis Static Load)

  • 이동섭;김인수;이세한;왕덕현
    • 한국기계가공학회지
    • /
    • 제18권9호
    • /
    • pp.72-80
    • /
    • 2019
  • In this task, the tool dynamometer design and manufacture, and the Ansys S/W structural analysis program for tool attachment that satisfies the cutting force measurement requirements of the tool dynamometer system are used to determine the cutting force generated by metal cutting using 3-axis static structural analysis and the LabVIEW system. The cutting power in a cutting process using a milling tool for processing metals provides useful information for understanding the processing, optimization, tool status monitoring, and tool design. Thus, various methods of measuring cutting power have been proposed. The device consists of a strain-gauge-based sensor fitted to a new design force sensing element, which is then placed in a force reduction. The force-sensing element is designed as a symmetrical cross beam with four arms of a rectangular parallel line. Furthermore, data duplication is eliminated by the appropriate setting the strain gauge attachment position and the construction of a suitable Wheatstone full-bridge circuit. This device is intended for use with rotating spindles such as milling tools. Verification and machining tests were performed to determine the static and dynamic characteristics of the tool dynamometer. The verification tests were performed by analyzing the difference between strain data measured by weight and that derived by theoretical calculations. Processing test was performed by attaching a tool dynamometer to the MCT to analyze data generated by the measuring equipment during machining. To maintain high productivity and precision, the system monitors and suppresses process disturbances such as chatter vibration, imbalances, overload, collision, forced vibration due to tool failure, and excessive tool wear; additionally, a tool dynamometer with a high signal-to-noise ratio is provided.

A High Efficient Piezoelectric Windmill using Magnetic Force for Low Wind Speed in Wireless Sensor Networks

  • Yang, Chan Ho;Song, Yewon;Jhun, Jeongpil;Hwang, Won Seop;Hong, Seong Do;Woo, Sang Bum;Sung, Tae Hyun;Jeong, Sin Woo;Yoo, Hong Hee
    • Journal of the Korean Physical Society
    • /
    • 제73권12호
    • /
    • pp.1889-1894
    • /
    • 2018
  • An innovative small-scale piezoelectric energy harvester has been proposed to gather wind energy. A conventional horizontal-axis wind power generation has a low generating efficiency at low wind speed. To overcome this weakness, we designed a piezoelectric windmill optimized at low-speed wind. A piezoelectric device having high energy conversion efficiency is used in a small windmill. The maximum output power of the windmill was about 3.14 mW when wind speed was 1.94 m/s. Finally, the output power and the efficiency of the system were compared with a conventional wind power system. This work will be beneficial for the piezoelectric energy harvesting technology to be applied to the real world such as wireless sensor networks (WSN).

미지물체를 안전하게 잡기 위한 지능형 그리퍼의 제어장치 개발 (Development of Intelligent Gripper Control Device to Safely Grip Unknown Objects)

  • 김한솔;김갑순
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.31-38
    • /
    • 2022
  • In this study, we designed and manufactured an intelligent gripper-control device to safely grip unknown objects. The gripper control device consists of a DSP circuit, power supply circuit, communication circuit, and amplifier circuit diagrams. The DSP is used because the values of the 3-axis force sensor to which the gripper is attached are measured and calculated at high speeds. The gripping force is determined based on this value, and the object must be safely gripped with the determined value. A basic characteristic test of the control device of the manufactured intelligent gripper was conducted, and it was confirmed that it operated safely.