DOI QR코드

DOI QR Code

A High Efficient Piezoelectric Windmill using Magnetic Force for Low Wind Speed in Wireless Sensor Networks

  • Yang, Chan Ho (Department of Electrical engineering, Hanyang University) ;
  • Song, Yewon (Department of Electrical engineering, Hanyang University) ;
  • Jhun, Jeongpil (Department of Electrical engineering, Hanyang University) ;
  • Hwang, Won Seop (Department of Electrical engineering, Hanyang University) ;
  • Hong, Seong Do (Department of Electrical engineering, Hanyang University) ;
  • Woo, Sang Bum (Department of Electrical engineering, Hanyang University) ;
  • Sung, Tae Hyun (Department of Electrical engineering, Hanyang University) ;
  • Jeong, Sin Woo (Department of Mechanical engineering, Hanyang University) ;
  • Yoo, Hong Hee (Department of Mechanical engineering, Hanyang University)
  • Received : 2018.11.15
  • Accepted : 2018.11.27
  • Published : 2018.12.30

Abstract

An innovative small-scale piezoelectric energy harvester has been proposed to gather wind energy. A conventional horizontal-axis wind power generation has a low generating efficiency at low wind speed. To overcome this weakness, we designed a piezoelectric windmill optimized at low-speed wind. A piezoelectric device having high energy conversion efficiency is used in a small windmill. The maximum output power of the windmill was about 3.14 mW when wind speed was 1.94 m/s. Finally, the output power and the efficiency of the system were compared with a conventional wind power system. This work will be beneficial for the piezoelectric energy harvesting technology to be applied to the real world such as wireless sensor networks (WSN).

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. F. Cassola, M. Burlando, M. Antonelli and C. F. Ratto, J. Appl. Meteorol. Clim. 47, 12 (2008).
  2. M. Peigney and D. Siegert, Smart Mat. Struct. 22, 9 (2013).
  3. N. G. Stephen, J. Sound. Vib. 293, 1 (2006). https://doi.org/10.1016/j.jsv.2005.09.011
  4. S. Roundy and P. K. Wright, Smart Mat. Struct. 13, 5 (2004). https://doi.org/10.1088/0964-1726/13/1/N02
  5. Y. M. Na, H. S. Lee, T. H. Kang, J. K. Park and T. G. Park, Korean J. Mater. Res. 25, 10 (2015).
  6. D. A. Wang and N. Z. Liu, Sens. Actuators A: Phys. 167, 2 (2011).
  7. M. Zhang, Y. Z. Liu and Z. M. Cao, Math. Probl. Eng. 2014, (2014).
  8. M. Al Ahmad, J. Electron. Mater. 43, 2 (2014).
  9. M. A. Ilyas and J. Swingler, Energy 125, 716 (2017). https://doi.org/10.1016/j.energy.2017.02.071
  10. Y. Cha, J. Hong, J. Lee, J. M. Park and K. Kim, Sensors 16, 7 (2016).
  11. Y. S. Cha and J. Seo, J. Intel. Mat. Syst. Str. 29, 7 (2018).
  12. A. Delnavaz and J. Voix, Smart Mat. Struct. 23, 10 (2014).
  13. M. Renaud, P. Fiorini, R. van Schaijk and C. van Hoof, Smart Mat. Struct. 21, 4 (2012).
  14. J. H. Ahn et al., J. Korean Phys. Soc. 73, 3 (2018).
  15. A. Jasim, G. Yesner, H. Wang, A. Safari, A. Maher and B. Basily, Appl. Energ. 224, 438 (2018). https://doi.org/10.1016/j.apenergy.2018.05.040
  16. C. H. Yang et al., Sens. Actuators A: Phys. 261, 317 (2017). https://doi.org/10.1016/j.sna.2017.04.025
  17. S. J. Hwang et al., Curr. Appl. Phys. 15, 6 (2015).
  18. K. B. Kim et al., Energ. Convers. Manage. 171, 31 (2018). https://doi.org/10.1016/j.enconman.2018.05.031
  19. J. Xiao, X. Zou and W. Y. Xu, Sensors 17, 10 (2017).
  20. H. L. Yang et al., J. Mater. Civil Eng. 29, 11 (2017).
  21. Y. Song et al., Int. J. Hydrogen Energy 41, 29 (2016).
  22. H. Wang, A. Jasim and X. D. Chen, Appl. Energ. 212, 1083 (2018). https://doi.org/10.1016/j.apenergy.2017.12.125
  23. Y. S. Cha et al., Renewable Energy 86, 449 (2016). https://doi.org/10.1016/j.renene.2015.07.077
  24. J. Y. Cho et al., Sens. Actuators A: Phys. 280, 340 (2018). https://doi.org/10.1016/j.sna.2018.07.023
  25. M. Deterre, E. Lefeuvre and E. Dufour-Gergam, Smart Mat. Struct. 21, 8 (2012).
  26. A. Khaligh, P. Zeng and C. Zheng, IEEE T. Ind. Electron. 57, 3 (2010). https://doi.org/10.1109/TED.2010.2048091
  27. M. Kim, J. Dugundji and B. L. Wardle, J. Korean Phys. Soc. 62, 11 (2013).
  28. S. Michelin and O. Doare, J. Fluid Mech. 714, 489 (2013). https://doi.org/10.1017/jfm.2012.494
  29. S. F. Nabavi, A. Farshidianfar and A. Afsharfard, Appl. Ocean Rese. 76, 174 (2018). https://doi.org/10.1016/j.apor.2018.05.005
  30. S. Orrego et al., Appl. Energ. 194, 212 (2017). https://doi.org/10.1016/j.apenergy.2017.03.016
  31. C. H. Yang et al., Ferroelectrics 449, 1 (2013). https://doi.org/10.1080/00150193.2013.822752

Cited by

  1. Movable and immovable magnets for two machines vol.63, pp.2, 2020, https://doi.org/10.3233/jae-190087
  2. The effectiveness of different width piezoelectric energy harvester in the pedestrian floor tile energy harvesting system for internet of things sensors vol.78, pp.1, 2018, https://doi.org/10.1007/s40042-020-00036-4
  3. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics vol.12, pp.4, 2018, https://doi.org/10.3390/mi12040436
  4. Research progress of cavity-based acoustic energy harvester vol.23, pp.7, 2021, https://doi.org/10.21595/jve.2021.22057
  5. Design and analysis of a double-acting nonlinear wideband piezoelectric energy harvester under plucking and collision vol.239, pp.no.pd, 2022, https://doi.org/10.1016/j.energy.2021.122370