• Title/Summary/Keyword: 3-additive mapping

Search Result 43, Processing Time 0.019 seconds

ON 3-ADDITIVE MAPPINGS AND COMMUTATIVITY IN CERTAIN RINGS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.41-51
    • /
    • 2007
  • Let R be a ring with left identity e and suitably-restricted additive torsion, and Z(R) its center. Let H : $R{\times}R{\times}R{\rightarrow}R$ be a symmetric 3-additive mapping, and let h be the trace of H. In this paper we show that (i) if for each $x{\in}R$, $$n=<<\cdots,\;x>,\;\cdots,x>{\in}Z(R)$$ with $n\geq1$ fixed, then h is commuting on R. Moreover, h is of the form $$h(x)=\lambda_0x^3+\lambda_1(x)x^2+\lambda_2(x)x+\lambda_3(x)\;for\;all\;x{\in}R$$, where $\lambda_0\;{\in}\;Z(R)$, $\lambda_1\;:\;R{\rightarrow}R$ is an additive commuting mapping, $\lambda_2\;:\;R{\rightarrow}R$ is the commuting trace of a bi-additive mapping and the mapping $\lambda_3\;:\;R{\rightarrow}Z(R)$ is the trace of a symmetric 3-additive mapping; (ii) for each $x{\in}R$, either $n=0\;or\;<n,\;x^m>=0$ with $n\geq0,\;m\geq1$ fixed, then h = 0 on R, where denotes the product yx+xy and Z(R) is the center of R. We also present the conditions which implies commutativity in rings with identity as motivated by the above result.

APPROXIMATE ADDITIVE MAPPINGS IN 2-BANACH SPACES AND RELATED TOPICS: REVISITED

  • YUN, SUNGSIK
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.393-399
    • /
    • 2015
  • W. Park [J. Math. Anal. Appl. 376 (2011) 193-202] proved the Hyers-Ulam stability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces. But there are serious problems in the control functions given in all theorems of the paper. In this paper, we correct the statements of these results and prove the corrected theorems. Moreover, we prove the superstability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces under the original given conditions.

ON FUNCTIONAL INEQUALITIES ASSOCIATED WITH JORDAN-VON NEUMANN TYPE FUNCTIONAL EQUATIONS

  • An, Jong-Su
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.371-376
    • /
    • 2008
  • In this paper, it is shown that if f satisfies the following functional inequality (0.1) $${\parallel}\sum\limits_{i,j=1}^3\;f{(xi,yj)}{\parallel}{\leq}{\parallel}f(x_1+x_2+x_3,\;y_1+y_2+y_3){\parallel}$$ then f is a bi-additive mapping. We moreover prove that if f satisfies the following functional inequality (0.2) $${\parallel}2\sum\limits_{j=1}^3\;f{(x_j,\;z)}+2\sum\limits_{j=1}^3\;f{(x_j,\;w)-f(\sum\limits_{j=1}^3\;xj,\;z-w)}{\parallel}{\leq}f(\sum\limits_{j=1}^3\;xj,\;z+w){\parallel}$$ then f is an additive-quadratic mapping.

FUZZY ALMOST q-CUBIC FUNCTIONAL EQATIONS

  • Kim, ChangIl
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.239-249
    • /
    • 2017
  • In this paper, we approximate a fuzzy almost cubic function by a cubic function in a fuzzy sense. Indeed, we investigate solutions of the following cubic functional equation $$3f(kx+y)+3f(kx-y)-kf(x+2y)-2kf(x-y)-3k(2k^2-1)f(x)+6kf(y)=0$$. and prove the generalized Hyers-Ulam stability for it in fuzzy Banach spaces.

Prediction of sharp change of particulate matter in Seoul via quantile mapping

  • Jeongeun Lee;Seoncheol Park
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.259-272
    • /
    • 2023
  • In this paper, we suggest a new method for the prediction of sharp changes in particulate matter (PM10) using quantile mapping. To predict the current PM10 density in Seoul, we consider PM10 and precipitation in Baengnyeong and Ganghwa monitoring stations observed a few hours before. For the PM10 distribution estimation, we use the extreme value mixture model, which is a combination of conventional probability distributions and the generalized Pareto distribution. Furthermore, we also consider a quantile generalized additive model (QGAM) for the relationship modeling between precipitation and PM10. To prove the validity of our proposed model, we conducted a simulation study and showed that the proposed method gives lower mean absolute differences. Real data analysis shows that the proposed method could give a more accurate prediction when there are sharp changes in PM10 in Seoul.

GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL EQUATIONS

  • Kim, Hark-Mahn;Son, Eun-Yonug
    • The Pure and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.297-306
    • /
    • 2009
  • In this paper, we obtain the general solution and the generalized HyersUlam stability theorem for an additive functional equation $af(x+y)+2f({\frac{x}{2}}+y)+2f(x+{\frac{y}{2})=(a+3)[f(x)+f(y)]$for any fixed integer a.

  • PDF

ON A CHARACTERIZATION OF LINEAR OPERATORS

  • Jun, Kil-Woung;Lee, Yang-Hi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.435-441
    • /
    • 2001
  • We obtain a characterization of linear operators on vector spaces and homomorphisms on algebras applying the stability properties of functional equations.

  • PDF