• Title/Summary/Keyword: 3-Dimensional Technology

Search Result 3,668, Processing Time 0.03 seconds

Noise Analysis of Sub Quarter Micrometer AlGaN/GaN Microwave Power HEMT

  • Tyagi, Rajesh K.;Ahlawat, Anil;Pandey, Manoj;Pandey, Sujata
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.125-135
    • /
    • 2009
  • An analytical 2-dimensional model to explain the small signal and noise properties of an AlGaN/GaN modulation doped field effect transistor has been developed. The model is based on the solution of two-dimensional Poisson's equation. The developed model explains the influence of Noise in ohmic region (Johnson noise or Thermal noise) as well as in saturated region (spontaneous generation of dipole layers in the saturated region). Small signal parameters are obtained and are used to calculate the different noise parameters. All the results have been compared with the experimental data and show an excellent agreement and the validity of our model.

Enhanced Locality Sensitive Clustering in High Dimensional Space

  • Chen, Gang;Gao, Hao-Lin;Li, Bi-Cheng;Hu, Guo-En
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.125-129
    • /
    • 2014
  • A dataset can be clustered by merging the bucket indices that come from the random projection of locality sensitive hashing functions. It should be noted that for this to work the merging interval must be calculated first. To improve the feasibility of large scale data clustering in high dimensional space we propose an enhanced Locality Sensitive Hashing Clustering Method. Firstly, multiple hashing functions are generated. Secondly, data points are projected to bucket indices. Thirdly, bucket indices are clustered to get class labels. Experimental results showed that on synthetic datasets this method achieves high accuracy at much improved cluster speeds. These attributes make it well suited to clustering data in high dimensional space.

Two-Dimensional Raman Correlation Spectroscopy Study of the Pathway for the Thermal Imidization of Poly(amic acid)

  • Han Yu, Keun-Ok;Yoo, Yang-Hyun;Rhee, John-Moon;Lee, Myong-Hoon;Yu, Soo-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.357-362
    • /
    • 2003
  • The pathway producing imide ring closure during the thermal imidization of poly(amic acid) (PAA) was investigated in detail using a new analytical method, two-dimensional (2D) Raman correlation spectroscopy. The signs of the cross peaks in synchronous spectra provided evidence of the thermal imidization of PAA into PI as the heating temperature increased. The signs of the cross peaks in asynchronous spectra suggested that the imide-related modes changed prior to the amide or carboxylic mode, which indicates that cyclization occurred before the amide proton was abstracted.

Three-Dimensional Shape Reconstruction from Images by Shape-from-Silhouette Technique and Iterative Triangulation

  • Cho, Jung-Ho;Samuel Moon-Ho Song
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1665-1673
    • /
    • 2003
  • We propose an image-based three-dimensional shape determination system. The shape, and thus the three-dimensional coordinate information of the 3-D object, is determined solely from captured images of the 3-D object from a prescribed set of viewpoints. The approach is based on the shape-from-silhouette (SFS) technique, and the efficacy of the SFS method is tested using a sample data set. The extracted three-dimensional shape is modeled with polygons generated by a new iterative triangulation algorithm, and the polygon model can be exported to commercial software. The proposed system may be used to visualize the 3-D object efficiently, or to quickly generate initial CAD data for reverse engineering purposes, including three dimensional design applications such as 3-D animation and 3-D games.

A combined stochastic diffusion and mean-field model for grain growth

  • Zheng, Y.G.;Zhang, H.W.;Chen, Z.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.369-379
    • /
    • 2008
  • A combined stochastic diffusion and mean-field model is developed for a systematic study of the grain growth in a pure single-phase polycrystalline material. A corresponding Fokker-Planck continuity equation is formulated, and the interplay/competition of stochastic and curvature-driven mechanisms is investigated. Finite difference results show that the stochastic diffusion coefficient has a strong effect on the growth of small grains in the early stage in both two-dimensional columnar and three-dimensional grain systems, and the corresponding growth exponents are ~0.33 and ~0.25, respectively. With the increase in grain size, the deterministic curvature-driven mechanism becomes dominant and the growth exponent is close to 0.5. The transition ranges between these two mechanisms are about 2-26 and 2-15 nm with boundary energy of 0.01-1 J $m^{-2}$ in two- and three-dimensional systems, respectively. The grain size distribution of a three-dimensional system changes dramatically with increasing time, while it changes a little in a two-dimensional system. The grain size distribution from the combined model is consistent with experimental data available.

A new swarm intelligent optimization algorithm: Pigeon Colony Algorithm (PCA)

  • Yi, Ting-Hua;Wen, Kai-Fang;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.425-448
    • /
    • 2016
  • In this paper, a new Pigeon Colony Algorithm (PCA) based on the features of a pigeon colony flying is proposed for solving global numerical optimization problems. The algorithm mainly consists of the take-off process, flying process and homing process, in which the take-off process is employed to homogenize the initial values and look for the direction of the optimal solution; the flying process is designed to search for the local and global optimum and improve the global worst solution; and the homing process aims to avoid having the algorithm fall into a local optimum. The impact of parameters on the PCA solution quality is investigated in detail. There are low-dimensional functions, high-dimensional functions and systems of nonlinear equations that are used to test the global optimization ability of the PCA. Finally, comparative experiments between the PCA, standard genetic algorithm and particle swarm optimization were performed. The results showed that PCA has the best global convergence, smallest cycle indexes, and strongest stability when solving high-dimensional, multi-peak and complicated problems.

Three-dimensional finite element analysis of forging processes with back pressure exerted by spring force (스프링 힘에 의한 배합부가 단조 공정의 3차원 유한요소해석)

  • Jang, S.M.;Kim, M.C.;Lee, M.C.;Jun, B.Y.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.470-473
    • /
    • 2009
  • In this paper, back pressure forging processes of which back pressures are exerted by mechanical forces including spring reaction are simulated by three-dimensional finite element method. The basic three-dimensional approach extended from two-dimensional approach is accounted for. An axisymmetric backward and forward extrusion process having a back pressing die, which is exposed to oscillation of forming load due to variation of reduction ratios with stroke and its related frequent variation of major deforming region, is simulated by both two and three dimensional approaches to justify the presented approach by their comparison. A three-dimensional forging process having a back pressing die attached to the punch by a mechanical spring is simulated and the results are investigated to reveal accuracy of the presented approach.

  • PDF

Dimensional Stability of Bentwoods by Treatment Conditions

  • Jung, In-Suk;Lee, Weon-Hee;Chang, Jun-Pok;Bae, Hyun-Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.85-90
    • /
    • 2002
  • This study was carried out to investigate the dimensional stability of bentwoods by three treatments: steaming, urethane varnish coating, and polyethylene glycol (PEG) treatment. Bentwood processing employed a bending-jig with only 4 cm radius of curvature (ROC). The used species were bitter wood (Picrasma quassioides), painted maple (Acer mono), and birch (Betula schmidtiii). The bending properties of these are well-known in bentwood production (Jung et al., 2002). The bentwoods were treated repeated at room temperature [20℃, RH 80% (12 hours) and 40℃ under RH 10% (12 hours)]. To estimate the dimensional stability of bentwoods, we measured the radius of curvature and end-distance. The best results could be attained with PEG treatment. Steaming was the worst treatment. Comparing the properties of the different species, the dimensional stability of bitter wood was excellent. It was concluded that the steaming treatment was unsuitable for dimensional stability of bentwoods.

Three-Dimensional Analysis of Self-Heating Effects in SOI Device (SOI 소자 셀프-히팅 효과의 3차원적 해석)

  • 이준하;이흥주
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.4
    • /
    • pp.29-32
    • /
    • 2004
  • Fully depleted Silicon-on-Insulator (FD-SOI) devices lead to better electrical characteristics than bulk CMOS devices. However, the presence of a thin top silicon layer and a buried SiO2 layer causes self-heating due to the low thermal conductivity of the buried oxide. The electrical characteristics of FDSOI devices strongly depend on the path of heat dissipation. In this paper, we present a new three-dimensional (3-D) analysis technique for the self-heating effect of the finger-type and bar-type transistors. The 3-D analysis results show that the drain current of the finger-type transistor is 14.7% smaller than that of the bar-type transistor due to the 3-D self-heating effect. We have learned that the rate of current degradation increases significantly when the width of a transistor is smaller that a critical value in a finger-type layout. The current degradation fro the 3-D structures of the finger-type and bar-type transistors is investigated and the design issues are also discussed.

  • PDF

Design of Two - Dimensional IIR Digital Filters (2-차원 IIR 디지탈 필터의 설계)

  • Lee, Min-Ho;Park, Chong-Yeon
    • Journal of Industrial Technology
    • /
    • v.14
    • /
    • pp.3-17
    • /
    • 1994
  • This paper develops a design technique for approximating nonseparable frequency characteristics by sums and products of separable transfer functions. Therefore nonseparable frequency characteristics includes the four-quadrant symmetry filters. The desired filter with half plan symmetry is obtained by shifting a low pass characteristic in the frequency domain, and by combining these shifted characteristics. Also the paper develops the technique for designing recursive and nonrecursive two dimensional digital filters by the application of a complex transformation to one dimensional low pass filter.

  • PDF