• 제목/요약/키워드: 3-Dimensional 16-Node Element

검색결과 10건 처리시간 0.023초

가우스 적분점을 수정한 2차원 6-절점 요소 및 3차원 16-절점 요소에 의한 자유진동해석 (The Free Vibration Analyses by Using Two Dimensional 6-Node Element and Three Dimensional 16-Node element with Modification of Gauss Sampling Point)

  • 김정운;경진호;권영두
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.2922-2931
    • /
    • 1994
  • We propose a modified 6-node element, where the sampling point of Gauss quadrature moved in the thickness direction. The modified 6-node element has been applied to static problems and forced motion analyses. In this study, this method is extended to the finite element analysis of the natural frequencies of two dimensional problems. We also propose a modified 16-node element for three dimensional problems, which behaves much like a 20-node element with smaller degree of freedom. The modified 6-node and 16-node elements have been applied to the modal analyses of beams and plates, respectively. The results agree well with the results of the 8-node or 20-node element models.

수정된 3차원 16절점 요소에 의한 복합재 판의 자유진동 및 감쇠특성 해석 (Analysis of Free Vibration and Damping Characteristics of a Composite Plate by Using Modified 3-Dimensional 16-Node Elements)

  • 윤태혁;김상엽;권영두
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.990-1004
    • /
    • 1995
  • A modified 16-node element for composite plate has been proposed and compared with the 20-node element to check the validity of it. The fields of numerical inspection include mode analysis and specific damping analysis. By symetrizing the conventional unsymmetric damping matrix in the analysis of specific damping capacity, we could compute the specific damping capacity and make a program, effectively. In addition, we could predict the errors caused by reduction of integration order in thickness direction depending upon the number of layers.

6절점 2차원 및 16절점 3차원 등매개변수 요소의 가우스 적분점 수정을 이용한 강제진동 해석 (The Forced Motion Analyses by Using Two Dimensional 6-Node and Three Dimensional 16-Node Isoparametric Elements with Modification of Gauss Sampling Point)

  • 김정운;권영두
    • 전산구조공학
    • /
    • 제8권4호
    • /
    • pp.87-97
    • /
    • 1995
  • 2차원 유한요소 모델의 동일한 형상과 하중 조건에 있어서 6절점 요소의 굽힘 강성은 8절점 요소의 굽힘 강성보다 더 크게 나타난다. 이와 같은 현상은 3차원 16절점 요소와 20절점 요소에서도 나타나며, 완전 요소의 중간 절점들을 제거하므로 인하여 나타난다. 따라서 이 현상을 상대적 강성강화 현상이라 할 수 있다. 강성강화 현상을 보정하기 위한 매우 효과적인 방법으로 가우스 적분점 수정법을 도출하였으며, 이 방법은 확장적인 강성과 같이 다른 종류의 강성을 변화시키지 않으며, 또한 패취시험을 통과하였다. 적분점 수정량은 재료의 포아송비의 함수로 나타나며, 2차원 평면응력 상태와 평면변형율 상태에 대한 두개의 수정식을 구하였고, 또한 3차원 고체요소에 대하여 확장하였다. 가우스 적분점 수정법의 효과를 검증하기 위하여 보와 판의 자유 및 강제운동 문제를 해석하였으며, 등방성 적층 보와 판에 대해서도 단층보와 단층판과 같은 방법으로 적용하여 그 효율성을 입증하였다.

  • PDF

Dynamic response of pile groups in series and parallel configuration

  • Sawant, V.A.;Ladhane, K.B.
    • Structural Engineering and Mechanics
    • /
    • 제41권3호
    • /
    • pp.395-406
    • /
    • 2012
  • Basic problem of pile foundation is three dimensional in nature. Three dimensional finite element formulation is employed for the analysis of pile groups. Pile, pile-cap and soil are modeled using 20 node element, whereas interface between pile or pile cap and soil is modeled using 16 node surface element. A parametric study is carried out to consider the effect of pile spacing, number of piles, arrangement of pile and soil modulus on the response of pile group. Results indicate that the response of pile group is dependent on these parameters.

회전자유도를 가지는 3차원 변절점 고체요소의 개발 (3D Variable Node Solid Elements with Drilling Degrees of Freedom)

  • 최창근;정근영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.9-16
    • /
    • 1995
  • A new three-dimensional transition solid element with drilling degrees of freedom is presented. The proposed transition element is established by adding variable nodes to a basic 8-node element for an effective connection between the refined region and the coarse. The derivation of the element in this paper is based on the variational principles in which the drilling rotations are introduced as independent variables. This element was also improved through the addition of modified non-conforming modes. Numerical examples show that performance of the element and the applicability to 3D adaptations are satisfactory.

  • PDF

A new 3D interface element for three dimensional finite element analysis of FRP strengthened RC beams

  • Kohnehpooshi, O.;Noorzaei, J.;Jaafar, M.S.;Saifulnaz, M.R.R.
    • Interaction and multiscale mechanics
    • /
    • 제4권4호
    • /
    • pp.257-271
    • /
    • 2011
  • The analysis of interfacial stresses in structural component has been the subject of several investigations but it still requires more effort and studies. In this study a general three-dimensional interface element has been formulated for stress and displacement analyses in the interfacial area between two adjacent plate bending element and brick element. Interface element has 16 nodes with 5 degrees of freedom (DOF) in each node adjacent to plate bending element and 3 DOF in each node adjacent to brick element. The interface element has ability to transfer three translations from each side of interface element and two rotations in the side adjacent to the plate element. Stiffness matrix of this element was formulated and implemented in three-dimensional finite element code. Application of this element to the reinforced concrete (RC) beam strengthened with fiber reinforced polymer (FRP) including variation of deflection, slip between plate and concrete, normal and shear stresses distributions in FRP plates have been verified using experimental and numerical work of strengthened RC beams carried out by some researchers. The results show that this interface element is effective and can be used for structural component with these types of interface elements.

철근콘크리트의 3차원 재료비선형해석 (A Three-Dimensional Material Nonlinear Analysis of Reinforced Concrete)

  • 박성수;성재표
    • 콘크리트학회지
    • /
    • 제8권2호
    • /
    • pp.119-127
    • /
    • 1996
  • 본 연구는 철근콘크리트 부재의 3차원 재료적 비선형해석을 하기 위한 것이다. 콘크리트는 3축 비선형 응력-변형률 거동, 균열, 파쇄 및 변형률완화를 포함하는 3차원 16절점 고체요소를 사용하고, 철근은 변형률경화를 갖는 3차원 3절점 트러스요소를 사용한다. 균열 후 골재의 맞물림을 고려하는 유효전단계수를 평가하기 위해서 균열의 진행여부에 따른 전단유지계수를 도입하였으며, 수치해를 얻기 위해 수정뉴턴방법을 사용하였다. 가우스점에서의 해석결과는 그래픽으로 확인된다. 수치예제로서 Krahl의 철근콘크리트 보와 Hedgren의 철근콘크리트 쉘을 채택하여 해석결과와 비교하였다.

등방성 및 복합재 플레이트용 16절점 요소의 강성행렬 계산 (Evaluation of Stiffness Matrix of 3-Dimensional Elements for Isotropic and Composite Plates)

  • 윤태혁;김정운;이재복
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2640-2652
    • /
    • 1994
  • The stiffness of 6-node isotropic element is stiffer than that of 8-node isotropic element of same configuration. This phenomenon was called 'Relative Stiffness Stiffening Phenomenon'. In this paper, an equation of sampling point modification which correct this phenomenon was derived for the composite plate, as well as an equation for an isotropic plate. The relative stiffness stiffening phenomena of an isotropic plate element could be corrected by modifying Gauss sampling points in the numerical integration of stiffness matrix. This technique could also be successfully applied to the static analyses of composite plate modeled by the 3-dimensional 16-node elements. We predicted theoretical errors of stiffness versus the number of layers that result from the reduction of numerical integration order. These errors coincide very well with the actual errors of stiffness. Therefore, we can choose full integration of reduced integration based upon the permissible error criterion and the number of layers by using the thoretically predicted error.

골유착성 보철물에 관한 삼차원 유한요소분석적 연구 (A STUDY ON THE OSSEOINTEGRATED PROSTESIS USING THREE DIMENSIONAL FINITE ELEMENT METHOD)

  • 김동원;김영수
    • 대한치과보철학회지
    • /
    • 제29권1호
    • /
    • pp.167-213
    • /
    • 1991
  • The successful replacement of missing teeth has been one driving aim behind the emergence of implant dentistry as both a technology and clinical vocation for over four decades. To date, a multitude of dental implant devices had been designed and utilized in the patient population. Most of these devices have been designed without support of the engineering criteria. The long-term success of any dental implant is dependent upon the optimization of stresses which occurs during oral function and parafunction. Although many studies have examined the biologic interactions between dental implants and living tissue, few studies have been reported on the biomechanical aspects of dental implants. The purpose of this study was to analyze the stress distribution of osseointegrated prosthesis on certain conditions, such as amount of load, location of load, length of fixtures, number of fixtures used, arch shape, bone quality, etc. Three dimentional finite element analysis was used for this study. FEM models were created using commercial software(Super SAP. for IBM 16 bit AT computer. All elements were 8-node brick, isoparametric. Mandible and prosthesis was modeled with 780 elements and 1074 nodes. The results were as follows : 1. In case of cantilever extension, there was a compressive stress at the base of the first implant and a tensile stress at the base of the second implant. 2. The stresses were linearly proportional to the amount of load. 3. The stresses were linearly proportional to the length of cantilever. 4. There was a stress concentration at the neck of the implant and bone under horizontal loads.

  • PDF

Building frame-pile foundation-soil interactive analysis

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • 제2권4호
    • /
    • pp.397-411
    • /
    • 2009
  • The effect of soil-structure interaction on a simple single storeyed and two bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the three dimensional finite element analysis with realistic assumptions. The members of the superstructure and substructure are descretized using 20 node isoparametric continuum elements while the interface between the soil and pile is modeled using 16 node isoparametric interface elements. Owing to viability in terms of computational resources and memory requirement, the approach of uncoupled analysis is generally preferred to coupled analysis of the system. However, an interactive analysis of the system is presented in this paper where the building frame and pile foundation are considered as a single compatible unit. This study is focused on the interaction between the pile cap and underlying soil. In the parametric study conducted using the coupled analysis, the effect of pile spacing in a pile group and configuration of the pile group is evaluated on the response of superstructure. The responses of the superstructure considered include the displacement at top of the frame and moments in the superstructure columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation used in the study. The percentage variation in the values of displacement obtained using the coupled and uncoupled analysis is found in the range of 4-17 and that for the moment in the range of 3-10. A reasonable agreement is observed in the results obtained using either approach.