• Title/Summary/Keyword: 3-D positioning

Search Result 433, Processing Time 0.029 seconds

Comparison of Positioning Accuracy Using the Pseudorange from Android GPS Raw Measurements (안드로이드 GPS 원시데이터의 의사거리를 이용한 측위 정확도 비교)

  • Gim, Joonseong;Park, Kwan-dong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.514-519
    • /
    • 2017
  • In this paper, the pseudorange-based GPS performance using the Android's raw measurements is compared with NMEA. In order to compare the performance between the two different implementations, we used Nexus 9 tablets and collected the raw measurements and NMEA data using the GNSS logger application provided by Google. To verify the performance of the final coordinates calculated, the VRS was used as the reference coordinate and compared with the NMEA results. The resulting horizontal, vertical, and 3D RMS errors of the pseudorange-based GPS using the Android's raw measurements are 3.05, 3.82, and 4.97 m, respectively, which correspond to 32% horizontal, 65% vertical and 49% 3D performance improvement compared with NMEA.

Times Series Analysis of GPS Receiver Clock Errors to Improve the Absolute Positioning Accuracy

  • Bae, Tae-Suk;Kwon, Jay-Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.537-543
    • /
    • 2007
  • Since the GPS absolute positioning with pseudorange measurements can significantly be affected by the observation error, the time series analysis of the GPS receiver clock errors was performed in this study. From the estimated receiver clock errors, the time series model is generated, and constrained back in the absolute positioning process. One of the CORS (Continuously Operating Reference Stations) network is used to analyze the behavior of the receiver clock. The dominant part of the model is the linear trend during 24 hours, and the seasonal component is also estimated. After constraining the modeled receiver clock errors, the estimated position error compared to the published coordinates is improved from ${\pm}11.4\;m\;to\;{\pm}9.5\;m$ in 3D RMS.

Photogrammetric Modeling of KOMPSAT Stereo Strips Using Minimum Control

  • Yoo, Hwan-Hee;Sohn, Hong-Gyoo;Kim, Seong-Sam;Jueng, Joo-Kweon
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.31-35
    • /
    • 2002
  • This paper describes an experiment for three-dimensional positioning for a pair of KOMPSAT stereostrips using the ancillary data and a single ground control point. The photogrammetric model for three-dimensional positioning was performed as follows: first, initialization of orbital and attitude parameters derived from ancillary data; second, adjustment of orbital and attitude parameters for the satellite to minimize the ground position error with respect to a GCP using the collinearity condition; third, determination of actual satellite position; and lastly, space intersection. This model was tested for a pair of stereo strips with 0.6 base-to-height ratio and GCPs identified from a 1:5,000 scale digital map. As the result, the satellite position of offset was corrected by only one GCP and the accuracy for the geometric modeling showed 38.89m RMSE.

  • PDF

ENHANCING THE PRECISION OF GPS STATIC RELATIVE POSITIONING USING THE OCEAN TIDE LOADING CORRECTION

  • Yeh, Ta-Kang;Chang, Ming-Han;Liou, Yuei-An;Chen, Chun-Sung
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.756-759
    • /
    • 2006
  • The ocean tide loading (OTL) is an important factor for the GPS positioning, especially in the height direction. The shorter of the distance to the ocean, the larger of the error by the OTL. The influence will be changed when we measure in different place and the order of magnitude is from few centimeters to ten centimeters. In this study, more than ten kinds of the OTL models were collected and applied on the GPS static relative positioning in Taiwan. The GPS observations including five stations were obtained from Nov. 9, 2004 to Feb. 23, 2005 and we used the Bernese GPS software to execute the data processing. In this period, the average amplitudes of the 3-D coordinates are as follows: N is 0.4 cm, E is 0.7 cm, h is 1.8 cm at Kinmen station; N is 0.7 cm, E is 1.3 cm, h is 2.3 cm at Lanyu station; N is 0.5 cm, E is 0.7 cm, h is 2.0 cm at Matsu station; N is 0.6 cm, E is 0.6 cm, h is 2.0 cm at Penghu station and N is 0.5 cm, E is 1.2 cm, h is 1.7 cm at Hsinchu station. Moreover, we will analyze the advantage and disadvantage of every kind of the OTL models in different environments to offer some information to the GPS users and enhance the precision of the GPS positioning.

  • PDF

A Comparative Study on the 3D Positioning Methods by CCD Images of The Mobile Mapping System (차량측량시스템의 CCD 영상에 의한 3차원 위치결정 방법 비교 연구)

  • Jeong, Dong-Hoon
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.169-180
    • /
    • 2007
  • Applicability of Land-based MMS(Mobile Mapping System) having been increased gradually as digitalization of administrative operation and construction of integrated systems of the government and provincial government are growing up. As these requirements, the case can be occurred that the facilities should be surveyed rapidly in the specific area. At this case, the real time field processing method is more necessary than the post processing method and data processing speed should be an essential element as important as accuracy. In this study, the two space intersection methods used in photogrammetry were programmed and compared with each other to select more proper method for the three dimensional positioning in the field processing. Especially, at the analytic space intersection, the traditional close range terrestrial photogrammetry was modified and applied to that to adapt to MMS's characteristics that camera position and attitude are changed according to the vehicle movement. As a result, the difference of the accuracy between two methods is not significant but at the calculation time, the analytic space intersection is faster three times than the space intersection using collinearity condition.

  • PDF

3-D Positioning by Adjustment of the Rational Polynomial Coefficients Data of IKONOS Satellite Image (IKONOS 위성영상 RPC 자료의 수정보완에 의한 3차원 위치결정)

  • 이효성;안기원;신석효
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.279-284
    • /
    • 2004
  • This paper presents on adjustment methods of the vendor-provided RPC(Rational Polynomial Coefficient) of GEO-level stereo images for the IKONOS satellite. RPC are adjusted with control points by the first-order polynomial and the block adjustment method in this study. As results, the maximum error of 3D ground coordinates by the adjusted RPC model did not exceed 4m. The block adjustment method is more stability than the first-order polynomial method.

  • PDF

Advances in Imaging of Subsurface Archaeology using GPR

  • Dean, Goodman;Yasushi, Nishimur;Kent, Schneider;Salvadore, Piro;Hiromichi, Hongo;Noriaki, Higashi
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.3
    • /
    • pp.161-170
    • /
    • 2004
  • Examples of GPR survey results at a variety of archaeological sites are presented. Several new analyses which include static corrections for the tilt of the GPR antenna are shown for imaging of burial mounds with significant topography. Example archaeological site plans developed from GPR remote sensing of Roman and Japanese sites are given. The first completely automated GPR survey, using only Global Positioning Satellite navigation to create 3D data volumes, is employed for a site in Louisiana to detect lost graves of the Choctaw Indian Tribe.

  • PDF

Circular Polarization Dielectric Resonator Antenna Excited by Single Loop Feed

  • Jeon, Sin-Hyung;Choi, Hyeng-Cheul;Kim, Hyeong-Dong
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.74-76
    • /
    • 2009
  • A new feeding method for the circular polarization (CP) dielectric resonator antenna (DRA) is proposed in this letter. Two orthogonal modes (${TE^x}_{{\delta}11}$, ${TE^y}_{1{\delta}1$) of the rectangular DRA are excited by a $90^{\circ}$ phase difference of the differential and common modes currents of the proposed feeding structure. To demonstrate the good CP performance of the proposed method, a right-hand CP DRA for a global positioning system was designed. The impedance bandwidth of the proposed antenna for $S_{11}$ < -10 dB and 3 dB axial ratio bandwidth are about 5.4% and 1.95% at 1.57 GHz, respectively.

  • PDF

A Study on the Design of Wideband Antenn as using U-Slot Patches (U-Slot 패치를 이용한 광대역 안테나의 설계에 관한 연구)

  • Kim Won-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.180-185
    • /
    • 2005
  • Microstrip antennas generally have a lot of advantages that are thin profile, lightweight, low cost, and conformability to a shaped surface application with integrated circuitry. In addition to military applications, they have become attractive candidates in a variety of commercial applications such as mobile satellite communications, the direct broadcast system (DBS), global positioning system (GPS), and remote sensing. Recently, many of the researches have been achieved for improving the impedance bandwidth of microstrip antennas. The basic form of the microstrip antenna, consisting of a conducting patch printed on a grounded substrate, has an impedance bandwidth of $1\~2\%$. For improvement of narrow bandwidth of microstrip patch, we were designed U-slot microstrip patch antenna in this paper. This antenna had wide bandwidth for all personal communication services (PCS) and IMT-2000. For the design of U-slot microstrip patch antenna using a finite difference time domain(FDTD) method. This numerical method could get the frequency property of U-slot patch antenna and the electromagnetic fields of slots.

Research of MEMS INS Based 3D Positioning Technologies for Workers in Construction Field (MEMS INS 기반 건설현장작업자의 3D 위치결정기법에 관한 연구)

  • Jang, Yonggu;Kim, Hyunsoo;Do, Seungbok;Jeon, Heungsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.51-60
    • /
    • 2013
  • It is proposed the new method to calculate the absolute altitude and horizontal position of worker in construction field. For this research, we used a pressure sensor, MEMS INS sensor to acquire 3D position of worker. The easiest way to show the result of this research is to use smart phone which equipped various digital sensors in this hardware. So we made two softwares: Data acquisition software in Android smart phone and Data monitoring software in PC. During this research, we encountered several kind of problems which have to be overcame. This paper shows these processes and the results of 3D positioning technologies we suggested newly.