• Title/Summary/Keyword: 3-D position

Search Result 2,275, Processing Time 0.032 seconds

A 3-D finite element analysis on the mandibular movement pattern and stress distribution during symphyseal widening (하악 이부확장 시 하악골 이동 양상과 응력 분포에 관한 삼차원 유한요소법적 연구)

  • Lee, Do-Hoon;Hong, Hyun-Sil;Chae, Jong-Moon;Jo, Jin-Hyung;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.38 no.1
    • /
    • pp.13-30
    • /
    • 2008
  • Objective: The objective of this study was to evaluate the displacement pattern and the stress distribution of the finite element model 3-D visualization during symphyseal widening according to the osteotomy position, osteotomy type, and distraction device. Methods: The kinds of distraction devices used were tooth-borne type, hybrid type, bone-borne type and tooth-borne type $30^{\circ}$ angulated, and the kinds of osteotomy design were vertical osteotomy line between the central incisors and step osteotomy line through the symphysis. Results: All reference points of the mandible including the condyles were displaced laterally irrespective of the osteotomy position, osteotomy method and distraction device. The anteroposterior or vertical displacements showed small differences between the groups. The widening pattern of the osteotomy line in the tooth-borne type of device was v shaped, and that of bone-borne type was a reverse v shape. However, the pattern in the hybrid type was parallel. The lateral displacement of the mandibular angle by the bone-borne device was more remarkable than the other types of devices. The displacement by the $30^{\circ}$ angulated tooth-borne type was different between the left and right sides in both the transverse and anteroposterior aspects. Conclusion: The design of the distraction devices and osteotomy line can influence the displacement pattern and the stress distribution during mandibular symphyseal distraction osteogenesis procedures.

Evaluation of electron dose distribution obtained from ADAC Pinnacle system against measurement and Monte Carlo method for breast patients

  • Lee, S.;Lee, R.;Park, D.;S. Suh
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.82-82
    • /
    • 2003
  • Introduction: With the development of dose calculation algorithms for electron beams, 3D RTP systerns are available for electron beam dose distribution commercially. However, no studies evaluated the accuracy of dose calculation with ADAC Pinnacle system for electron beams. So, the accuracy of the ADAC system is investigated by comparing electron dose distributions from ADAC system against the BEAMnrc/DOSXYZnrc. Methods: A total of 33 breast cancer patients treated with 6, 9, and 12MeV electrons in our institution was selected for this study. The first part of this study is to compare the dose distributions of measurement, TPS and the BEAMnrc/DOSXYZnrc code in flat water phantom at gantry zero position and for a 10 ${\times}$ 10 $\textrm{cm}^2$ field. The second part is to evaluate the monitor unit obtained from measurement and TPS. Adding actual breast patient's irregular blocks to the first part, monitor units to deliver 100 cGy to the dose maximum (dmax) were calculated from measurement and 3D RTP system. In addition, the dose distributions using blocks were compared between TPS and the BEAMnrc/DOSXYZnrc code. Finally, the effects of tissue inhomogeneities were studied by comparing dose distributions from Pinnacle and Monte Carlo method on CT data sets. Results: The dose distributions calculated using water phantom by the TPS and the BEAMnrc/ DOSXYZnrc code agreed well with measured data within 2% of the maximum dose. The maximum differences of monitor unit between measured and Pinnacle TPS in flat water phantom at gantry zero position were 4% for 6 MeV and 2% for 9 and 12 MeV electrons. In real-patient cases, comparison of depth doses and lateral dose profiles calculated by the Pinnacle TPS, with BEAMnrc/DOSXYZnrc code has generally shown good agreement with relative difference less than +/-3%. Discussion: For comparisons of real-patient cases, the maximum differences between the TPS and BEAMnrc/DOSXYZnrc on CT data were 10%. These discrepancies were due in part to the inaccurate dose calculation of the TPS, so that it needs to be improved properly. Conclusions: On the basis of the results presented in this study, we can conclude that the ADAC Pinnacle system for electron beams is capable of giving results absolutely comparable to those of a Monte Carlo calculation.

  • PDF

Accuracy Analysis of Medium Format CCD Camera RCD105 (중형카메라 RCD105 정확도 분석)

  • Kim, Tae-Hoon;Won, Jae-Ho;Kim, Chung-Pyeong;So, Jae-Kyeong;Yun, Hee-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.449-454
    • /
    • 2010
  • Lately, airborne digital camera and airborne laser scanner in field of airborne surveying are used to build geography information such as digital ortho photo map and DEM(Digital Elevation Model). In this study, 3D position accuracy is compared medium format CCD camera RCD105 with airborne digital camera DMC. For this, test area was decided for aerial photograph. And using 1/1,000 scale digital map, ground control points were selected for aerial triangulation and check points were selected for horizontal/vertical accuracy analysis using softcopy stereoplotter. Accuracy of RCD105 and DMC was estimated by result of aerial triangulation and result of check points measurement of using softcopy stereoplotter. In result of aerial triangulation, RMSE(Root Mean Square Error) X, Y, Z of RCD105 is 2.1, 2.2, 1.3 times larger than DMC. In result of check point measurement using softcopy stereoplotter, horizontal/ vertical RMSE of RCD105 is 2.5, 4.3 times larger than DMC. Even though accuracy of RCD105 is lower than DMC, it is maybe possible to make digital map and ortho photo using RCD105.

Evaluation of the Usefulness of the Self-developed Kw-infrared Reflective Marker in Non-coplanar Treatment (비동일면 치료 시 자체 제작한 Kw-infrared Reflective Marker의 유용성 평가)

  • Kwon, Dong-Yeol;Ahn, Jong-Ho;Park, Young-Hwan;Song, Ki-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • Purpose: In radiotherapy that takes into account respiration using a RPM (Real time Position Management, Varian, USA) system, which can treat in consideration of the movement of tumor, infrared reflective markers supplied by manufacturers cannot obtain respiratory signal if the couch rotates at a certain angle or larger. In order to solve this problem, the author developed the 3D infrared reflective marker named 'Kw-marker' that can obtain respiratory signal at any angle, and evaluate its usefulness. Materials and Methods: In order to measure the stability of respiratory signal, we put the infrared reflective marker on the 3D moving phantom that can reproduce respiratory movement and acquired respiratory signal for 3 minutes under each of 3 conditions (A: $couch\;0^{\circ}$, a manufacturer's infrared reflective marker B: $couch\;0^{\circ}$, Kw-marker C: $couch\;90^{\circ}$, Kw-marker). By analyzing the respiratory signal using a breath analysis program (Labview Ver. 7.0), we obtained the peak value, valley value, standard deviation, variation value, and amplitude value. In order to examine the rotation error and moving range of the target, we placed a B.B phantom on the 3D moving phantom, and obtained images at a couch angle of $0^{\circ}$ and $90^{\circ}$ using OBI, and then acquired the X, Y and Z values (mm) of the ball bearing at the center of the B.B phantom. Results: According to the results of analyzing the respiratory signal, the standard deviation at the peak value was A: 0.002, B: 0.002 and C: 0.003, and the stability of respiration for amplitude was A: 0.15%, B: 0.14% and C:0.13%, showing that we could get respiratory signal stably by using the Kw-marker. When the couch rotated $couch\;90^{\circ}$, the mean rotation error of the ball bearing, namely, the target was X: -1.25 mm, Y: -0.45 mm and Z: +0.1 mm, which were within 1.3 mm on the average in all directions, and the difference in the moving range of the target was within 0.3 mm. Conclusion: When we obtained respiratory signal using the Kw-marker in non-coplanar treatment where the couch rotated, we could acquire respiratory signal stably and the Kw-marker was effective enough to substitute for the manufacturer's infrared reflective marker. When the rotation error and moving range of the target were measured, there was little difference, indicating that the displacement of the reflector movement in couch rotation is the cause of change in the scale and amplitude of respiratory signal. If the converted value of amplitude height according to couch angle is studied further and applied, it may be possible to perform non-coplanar phase-based gating treatment.

  • PDF

A Tracking of Head Movement for Stereophonic 3-D Sound (스테레오 입체음향을 위한 머리 움직임 추정)

  • Kim Hyun-Tae;Lee Kwang-Eui;Park Jang-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1421-1431
    • /
    • 2005
  • There are two methods in 3-D sound reproduction: a surround system, like 3.1 channel method and a binaural system using 2-channel method. The binaural system utilizes the sound localization principle of a human using two ears. Generally, a crosstalk between each channel of 2-channel loudspeaker system should be canceled to produce a natural 3-D sound. To solve this problem, it is necessary to trace a head movement. In this paper, we propose a new algorithm to correctly trace the head movement of a listener. The Proposed algorithm is based on the detection of face and eye. The face detection uses the intensity of an image and the position of eyes is detected by a mathematical morphology. When the head of the listener moves, length of borderline between face area and eyes may change. We use this information to the tracking of head movement. A computer simulation results show That head movement is effectively estimated within +10 margin of error using the proposed algorithm.

  • PDF

3D Adaptive Bilateral Filter for Ultrasound Volume Rendering (초음파 볼륨 렌더링을 위한 3차원 양방향 적응 필터)

  • Kim, Min-Su;Kwon, Koojoo;Shin, Byeoung-Seok
    • Journal of Korea Game Society
    • /
    • v.15 no.2
    • /
    • pp.159-168
    • /
    • 2015
  • This paper introduces effective noise removal method for medical ultrasound volume data. Ultrasound volume data need to be filtered because it has a lot of noise. Conventional 2d filtering methods ignore information of adjacent layers and conventional 3d filtering methods are slow or have simple filter that are not efficient for removing noise and also don't equally operate filtering because that don't take into account ultrasound' sampling character. To solve this problem, we introduce method that fast perform in parallel bilateral filtering that is known as good for noise removal and adjust proportionally window size depending on that's position. Experiments compare noise removal and loss of original data among average filtered or biliteral filtered or adaptive biliteral filtered ultrasound volume rendering images. In this way, we can more efficiently and correctly remove noise of ultrasound volume data.

Displacement of scan body during screw tightening: A comparative in vitro study

  • Kim, JungHan;Son, KeunBaDa;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.307-315
    • /
    • 2020
  • PURPOSE. The purpose of this study was to evaluate the occurrence of displacement while tightening the screw of scan bodies, which were compared according to the material type. MATERIALS AND METHODS. Three types of scan bodies whose base regions were made up of polyether ether ketone (PEEK) material [Straumann Group, Dentium Group, and Myfit (PEEK) Group] and another scan body whose base region was made up of titanium material [Myfit (Metal) Group] were used (15 per group). The reference model was fabricated by aligning the scan body library on the central axis of the implant, and moving this position by the resin model. The screws of the scan bodies were tightened to the implant fixture with torques of 5 Ncm, 10 Ncm, and a hand tightening torque. After the application of the torque, the scan bodies were scanned using a laboratory scanner. To evaluate the vertical, horizontal, and 3-dimensional (3D) displacements, a 3D inspection software program was used. To examine the difference among groups, one-way analysis of variance and Tukey's HSD post hoc test were used (α=.05). RESULTS. There were significant differences in 3D, vertical, and horizontal displacements among the different types of scan bodies (P<.001). There was a significantly lower displacement in the Straumann group than in the Myfit (PEEK) and Dentium groups (P<.05). CONCLUSION. The horizontal displacement in all groups was less than 10 ㎛. With the hand tightening torque, a high vertical displacement of over 100 ㎛ occurred in PEEK scan bodies (Myfit and Dentium). Therefore, it is recommended to apply a tightening torque of 5 Ncm instead of a hand tightening torque.

CoMFA and CoMSIA Analysis on the Selective Fungicidal Activity of N-phenyl-D-phenylthionocarbamate Analogues against Resistant and Sensitive Gray Mold (Botrytis cinerea) (저항성 및 감수성 잿빛곰팡이병균(Botrytis cinerea)에 대한 N-Phenyl-O-phenylthionocarbamate 유도체들의 선택적인 살균활성에 관한 CoMFA 및 CoMSIA 분석)

  • Soung, Min-Gyu;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.3
    • /
    • pp.138-143
    • /
    • 2007
  • The relationships between three dimensional quantitative structure and activity relationships (3D-QSARs) for the selective fungicidal function between N-phenyl substituents of N-phenyl-O-phenyl-thionocarbamate derivatives analogues and their the fungicidal activities against resistant (RBC) and sensitive (SBC) gray mold (Botrytis cinerea) were studied quantitatively using CoMFA and CoMSIA methods. The statistical values of optimized CoMSIA (M7) model were better ($r^2$ & $q^2=CoMSIA{\gg}CoMFA$) than that of CoMFA (M5) model. And the factor influencing of the selective between the fungicidal activity against RBC and SBC was dependent on electrostatic field of CoMFA (M5) model. Therefore, it is predicted that, from the CoMSIA contour maps of CoMSIA (M7) model, the selectivity will be improved by the H-bond donor that is with negatively charged favored group at meta-position on the N-phenyl ring.

An Optimal Algorithm for Weight Balancing in a 3D Mesh Architecture (3D 메쉬 구조에서 무게 균형을 위한 최적 알고리즘)

  • So, Sun Sup;Son, Kyung A;Eun, Seongbae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1095-1101
    • /
    • 2020
  • Vessels or aircraft should be loaded with containers or cargo to maintain weight balance in order to be stable when navigating the route. The container loading algorithm is known as the NP problem and several heuristic methods have been studied. Containers can be characterized by the uniform volume and weight, which makes it easier to find an optimal loading method. In this paper, we propose an algorithm for weight balance when the volume and weight of an object are uniform. It is assumed that the loading space has a special structure of m * n mesh (where m and n are both odd). In this case, we designed a greedy algorithm and proved that the algorithm is optimal in that it can always find a loading position that maintains a weight balance regardless of the number of objects. Our algorithm can be used in many engineering problems, such as loading algorithms and load balancing problems.

Quantification of three-dimensional facial asymmetry for diagnosis and postoperative evaluation of orthognathic surgery

  • Cao, Hua-Lian;Kang, Moon-Ho;Lee, Jin-Yong;Park, Won-Jong;Choung, Han-Wool;Choung, Pill-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.17.1-17.11
    • /
    • 2020
  • Background: To evaluate the facial asymmetry, three-dimensional computed tomography (3D-CT) has been used widely. This study proposed a method to quantify facial asymmetry based on 3D-CT. Methods: The normal standard group consisted of twenty-five male subjects who had a balanced face and normal occlusion. Five anatomical landmarks were selected as reference points and ten anatomical landmarks were selected as measurement points to evaluate facial asymmetry. The formula of facial asymmetry index was designed by using the distances between the landmarks. The index value on a specific landmark indicated zero when the landmarks were located on the three-dimensional symmetric position. As the asymmetry of landmarks increased, the value of facial asymmetry index increased. For ten anatomical landmarks, the mean value of facial asymmetry index on each landmark was obtained in the normal standard group. Facial asymmetry index was applied to the patients who had undergone orthognathic surgery. Preoperative facial asymmetry and postoperative improvement were evaluated. Results: The reference facial asymmetry index on each landmark in the normal standard group was from 1.77 to 3.38. A polygonal chart was drawn to visualize the degree of asymmetry. In three patients who had undergone orthognathic surgery, it was checked that the method of facial asymmetry index showed the preoperative facial asymmetry and the postoperative improvement well. Conclusions: The current new facial asymmetry index could efficiently quantify the degree of facial asymmetry from 3D-CT. This method could be used as an evaluation standard for facial asymmetry analysis.