A 3-D finite element analysis on the mandibular movement pattern and stress distribution during symphyseal widening

하악 이부확장 시 하악골 이동 양상과 응력 분포에 관한 삼차원 유한요소법적 연구

  • Lee, Do-Hoon (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Hong, Hyun-Sil (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Chae, Jong-Moon (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Jo, Jin-Hyung (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Kim, Sang-Cheol (Department of Orthodontics, School of Dentistry, Wonkwang University)
  • 이도훈 (원광대학교 치과대학 치과교정학교실) ;
  • 홍현실 (원광대학교 치과대학 치과교정학교실) ;
  • 채종문 (원광대학교 치과대학 치과교정학교실) ;
  • 조진형 (원광대학교 치과대학 치과교정학교실) ;
  • 김상철 (원광대학교 치과대학 치과교정학교실)
  • Published : 2008.02.28

Abstract

Objective: The objective of this study was to evaluate the displacement pattern and the stress distribution of the finite element model 3-D visualization during symphyseal widening according to the osteotomy position, osteotomy type, and distraction device. Methods: The kinds of distraction devices used were tooth-borne type, hybrid type, bone-borne type and tooth-borne type $30^{\circ}$ angulated, and the kinds of osteotomy design were vertical osteotomy line between the central incisors and step osteotomy line through the symphysis. Results: All reference points of the mandible including the condyles were displaced laterally irrespective of the osteotomy position, osteotomy method and distraction device. The anteroposterior or vertical displacements showed small differences between the groups. The widening pattern of the osteotomy line in the tooth-borne type of device was v shaped, and that of bone-borne type was a reverse v shape. However, the pattern in the hybrid type was parallel. The lateral displacement of the mandibular angle by the bone-borne device was more remarkable than the other types of devices. The displacement by the $30^{\circ}$ angulated tooth-borne type was different between the left and right sides in both the transverse and anteroposterior aspects. Conclusion: The design of the distraction devices and osteotomy line can influence the displacement pattern and the stress distribution during mandibular symphyseal distraction osteogenesis procedures.

하악 이부확장에서 골 절단선의 위치 및 종류와 견인 장치의 종류에 따른 차이를 알아보고자 삼차원 유한요소법으로 하악골의 이동 양상 및 응력 분포를 조사하였다. 골 견인장치의 종류로는 치아 의존형과 골 의존형, 혼합형, $30^{\circ}$ 기울여 위치한 치아 의존형의 4가지를, 골절단 위치와 방법으로 하악 중절치 간 수직절단과 하악 정중이부를 관통하는 계단식 골절단 등의 2가지를 설정하였다. 연구 결과, 골절단의 위치 및 방법과 견인장치의 종류에 관계없이 과두를 포함한 하악골의 모든 부위에서 외측방 변위를 보였으며 상하적이나 전후방적 변위는 적은 양이었으나 방향에 있어 군간에 차이를 보였다. 치아 의존형 장치에 의한 골절단면 이개 양태는 V형이었으나 골 의존형 장치는 역V형이고 혼합형 장치는 평행하게 확장되었다. 골 의존형 장치에 의한 하악각의 외측 변위량이 다른 장치에 비해 컸다. $30^{\circ}$ 기울여 위치한 치아 의존형에서의 변위는 측방적, 전후방적 면에서 좌우 차이가 인정되었다.

Keywords

References

  1. Kim YW, Sohn BH. A study on initial changes during canine retraction by the finite element method. Korean J Orthod 1988;18:25-53
  2. Creekmore TD, Eklund MK. The possibility of skeletal anchorage. J Clin Orthod 1983;17:266-9
  3. Proffit WR, White RP. Surgical-orthodontic treatment. St Louis: Mosby; 1990
  4. Chin M, Toth BA. Distraction osteogenesis in maxillofacial surgery using internal device: Review of five cases. J Oral Maxillofac Surg 1996;54:45-53 https://doi.org/10.1016/S0278-2391(96)90303-1
  5. Kim SC, Tae KC. Corticotomy and the intrusive Tooth Movement. Korean J Orthod 2003;33:399-405
  6. Liou EJ. Huang CS. Rapid canine retraction through distraction of periodontal ligament. Am J Orthod Dentofacial Orthop 1998;114:372 https://doi.org/10.1016/S0889-5406(98)70181-7
  7. Tae KC, Kang KH, Min SK. Case reports of antero-posterior movement with distraction osteogenesis in maxillary anterior segment. Korean Assoc Maxillofac Plast Reconstr Surg 2003;25:358-63
  8. Gosain AK. Distraction osteogenesis of the craniofacial skeleton. Plast Reconstr Surg 2001;107:278-80 https://doi.org/10.1097/00006534-200101000-00050
  9. Lynch SE, Genco RJ, Marx RE. Tissue engineering. Guintessence 1999
  10. McCarthy JG, Stelnicki EJ, Mehrara BJ, Longaker MT. Distraction osteogenesis of the craniofacial skeleton. Plast Reconstr Surg 2001;107:1812-27 https://doi.org/10.1097/00006534-200106000-00029
  11. Altuna G. Walker DA, Freeman E. Surgically assisted rapid orthodontic lengthening of the maxilla in primate? A pilot study. Am J Orthod Dentofacial Orthop 1995;107:531-6 https://doi.org/10.1016/S0889-5406(95)70120-6
  12. Figueroa AA, Polley JW. Management of the sever cleft maxillary defiency with distraction osteogenesis: Procedure and result. Am J Orthod Dentofacial Orthop 1999;115:1-20 https://doi.org/10.1016/S0889-5406(99)70310-0
  13. Bell WH, Epker BN. Surgical orthodontic expansion of the maxilla. Am J Orthod 1976;70:517-28 https://doi.org/10.1016/0002-9416(76)90276-1
  14. Smith SW, Sachdeva RC, Cope JB. Evaluation of the consolidation period during osteodistraction using computed tomography. Am J Orthod Dentofacial Orthop 1999;116:254-63 https://doi.org/10.1016/S0889-5406(99)70235-0
  15. Del Santo M Jr, English JD, Wolford LM, Gandini LG Jr. Midsymphyseal distraction osteogenesis for correcting transverse mandibular discrepancies. Am J Orthod Dentofacial Orthop 2002;121:629-38 https://doi.org/10.1067/mod.2002.122240
  16. Proffit WR, Henry W, Fields JR. Contemporary orthodentics. St Louis: Mosby; 2000
  17. Park YC, Hwang HS, Choi KC. Biomechanics in clinical orthodontics. Seoul: Narae Publishing; 1997
  18. Contasti G, Guerrero C, Rodriguez AM, Legan HL. Mandibular widening by distraction osteogenesis. J Clin Orthod 2001;35:165-73
  19. Hollis BJ, Block MS, Gardiner D, Chang A. An experimental study of mandibular arch widening in the dog using distraction osteogenesis. J Oral Maxillofac Surg 1998;56:330-8 https://doi.org/10.1016/S0278-2391(98)90110-0
  20. Weil TS, Van Sickels JE, Payne CJ. Distraction osteogenesis for correction of transverse mandibular deficiency: A preliminary report. J Oral Maxillofac Surg 1997;55:953-60 https://doi.org/10.1016/S0278-2391(97)90069-0
  21. Guerrero CA, Bell WH, Rodriguez AM. Mandibular widening by intraoral distraction osteogenesis. Br J Oral Maxillofac Surg 1997;35:383-92 https://doi.org/10.1016/S0266-4356(97)90712-9
  22. Cope JB, Samchukov ML, Cherkashin AM. Mandibular distraction osteogenesis: A historic perspective and future direction. Am J Orthod Dentofacial Orthod 1999;115;448-60 https://doi.org/10.1016/S0889-5406(99)70266-0
  23. Von Sickels JE. Distraction osteogenesis versus orthognathic surgery. Am J Orthod Dentofacial Orthod 2000:118:482-484 https://doi.org/10.1067/mod.2000.110517
  24. Mommaerts MY. Bone anchored intraoral device for transmandibular distraction. Br J Oral Maxillofac Surg 2001;39:8-12 https://doi.org/10.1054/bjom.2000.0480
  25. Del Santo M Jr, Guerrero CA, Buschang PH, English JD, Samchukov ML, Bell WH. Long-term skeletal and dental effects of mandibular symphyseal distraction osteogenesis. Am J Orthod Dentofacial Orthop 2000;118:485-93 https://doi.org/10.1067/mod.2000.109887
  26. Conley R, Legan H. Mandibular Symphyseal Distraction Osteogenesis: Diagnosis and Treatment Planning Considerations. Angle Orthod 2003;73:3-11
  27. King JW, Wallace JC, Scanlan D. A new appliance for mandibular widening by distraction osteogenesis. J Clin Orthod 2001;35:666-72
  28. Kim SC, Min SK, Oh SH, Tae KC, Kang KH. Surgically assisted rapid tooth movement. Seoul: Myungmun Publishing, 2004
  29. Park CK, Yang WS. A three-dimensional finite element analysis on the location of center of resistance during intrusion of upper anterior teeth. Korean J Orthod 1997;27:259-72
  30. Choi CK. Finite element method. Taejon: Techno-press; 2002
  31. Lee JY. Finite element method. Seoul: Munundang; 2004
  32. Korioth TW, Hannam AG. Deformation of the human mandible during simulated tooth clenching. J Dent Res 1994;73:56-66 https://doi.org/10.1177/00220345940730010801
  33. Graber TM, Vanarsdall RW. Orthodontics: Current principles and techniques. St Louis: Mosby; 1994
  34. Kim HS, Nahm DS. A finite element and strain gauge analysis on the displacement of craniofacial complex with cervical headgear. Korean J Orthod 1987;17:185-97
  35. Wheeler RC. A textbook of dental anatomy and physiology. Philadelphia: WB Saunders; 1965
  36. Andrews LF. The six keys to normal occlusion. Am J Orthod 1972;62:296-309 https://doi.org/10.1016/S0002-9416(72)90268-0
  37. Dewel BF. Clinical observations on the axial inclination of teeth. Am J Orthod 1949:35:98-115 https://doi.org/10.1016/0002-9416(49)90111-6
  38. Kim JS, Jin KH, Hong SJ. A statistical study of clinical crown inclination in Korean's naturally occuring optimal occlusion. Korean J Orthod 1992;22:715-33
  39. Choi BT, Yang WS. A roentgenocephalometric study on mesiodistal axial inclination of posterior teeth. Korean J Orthod 1984;14:151-60
  40. Noyes HJ, Rushing CH, Sims HA. The angle of axial inclination of human central incisor teeth. Angle Orthod 1943;13:60-1
  41. Coolidge ED. The thickness of the human periodontal membrane. J Am Dent Assoc. 1937;24:1260-70
  42. Tanne K, Koenig HA, Burstone CJ. Moment to force ratios and the center of rotation. Am J Orthod Dentofacial Orthod 1988;94:426-31 https://doi.org/10.1016/0889-5406(88)90133-3
  43. Joe BJ, Sohn BH. A finite element analysis of the stress distribution and displacement in human maxilla to rapid palatal expansion. Korean J Orthod 1985;15:43-54
  44. McGuinness N, Wilson AN, Jones M, Middleton J, Roberson NR. Stresses induced by edgewise appliances in the periodontal ligament - a finite element study. Angle Orthod 1992;62:15-22
  45. Kim MK. Anatomy of head and neck. Seoul: Medical dental publishing; 1998
  46. Kim JH, Chung JH, Cho KZ. Finite element analysis of mandibular stresses and denture movements induced by overdentures. J Korean Acad Prosthodont 1990;28:63-94
  47. Tahk SG, Park YC. A study on craniofacial growth analysis of Korean children by the finite element method. Korean J Orthod 1988:18:343-66
  48. Kim JY, Sohn BH. A finite element analysis on the effect of the reverse headgear to the maxillary complex. Korean J Orthod 1985;15:7-22
  49. Choue HK, Lee KS. A finite element analysis of the stress distribution and displacement of an in-vitro human mandible to the orthopedic force. Korean J Orthod 1984;14:75-92
  50. Jang JW, Sohn BH. A study on the pattern of movement during retraction of maxillary central incisor by finite element method. Korean J Orthod 1991;21:617-34
  51. Chun KM, Nahm DS. Mechanical analysis of the multiloop edgewise arch wire. Korean J Orthod 1991;21:31-47
  52. Hwang CI, Suhr CH. Three-dimensional finite element analysis on reciprocal action by torque application in maxillary archwire. Korean J Orthod 1994;24:479-508
  53. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Pleat Res 1989;238:249-81
  54. Snyder CC, Levine GA, Swanson HM, Browne EZ. Mandibular lengthening by gradual distraction. Plast Reconstr Surg 1973;51:506-8 https://doi.org/10.1097/00006534-197305000-00003
  55. Shapiro PA. Mandibular dental arch form and dimension: treatment and postretension changes. Am J Orthod 1974;66:58-70 https://doi.org/10.1016/0002-9416(74)90193-6
  56. Gardner SD, Chaconas S. Posttreatment and postretention changes following orthodontic therapy. Angle Orthod 1976;46:151-61
  57. Strang RHW. The fallacy of denture expansion as a treatment procedure. Angle Orthod 1949;19:12-22
  58. Kisnisci RS, Fowel SD, Epker BN. Distraction osteogenesis in silver Russell syndrome to expand the mandible. Am J Orthod Dentofacial Orthod 1999;116:25-30 https://doi.org/10.1016/S0889-5406(99)70299-4
  59. Bell WH, Gonzalez M, Samchukov ML, Guerrero CA. Intraoral widening and lengthening the mandible in baboons by distraction osteogenesis. J Oral Maxillofac Surg 1999;57:548-62 https://doi.org/10.1016/S0278-2391(99)90074-5
  60. Samchukov ML, Cope JB, Cherkashin AM. The effect of sagittal orientation of the distractor on biomechanics of mandibular lengthening. J Oral Maxillofac Surg 1999;57:1214-22 https://doi.org/10.1016/S0278-2391(99)90490-1
  61. Cope JB, Yamashita J, Healy S, Dechow PC, Harper RP. Force level and strain patterns during bilateral mandibular osteodistraction. J Oral Maxillofac Surg 2000;58:171-8 https://doi.org/10.1016/S0278-2391(00)90333-1
  62. Samchukov ML, Cope JB, Harper RP Ross JD. Biomechanical considerations of mandibular lenthening and widening by gradual distraction using a computer medel. J Oral Maxillofac Surg 1998;56:51-9 https://doi.org/10.1016/S0278-2391(98)90916-8
  63. Harper RP, Bell WH, Hilton RJ, Browne R, Cherkashin AM, Samchukov ML. Reactive changes in the temporomandibular joint after mandibular midline osteodistraction. Br J Oral Maxillofac Surg 1997;35:20-5 https://doi.org/10.1016/S0266-4356(97)90004-8
  64. Braun S, Bottrel A, Legan HL. Condylar displacement related to mandibular symphyseal distraction. Am J Orthod Dentofacial Orthop 2002;121:162-6 https://doi.org/10.1067/mod.2002.121560