DOI QR코드

DOI QR Code

3D Adaptive Bilateral Filter for Ultrasound Volume Rendering

초음파 볼륨 렌더링을 위한 3차원 양방향 적응 필터

  • Kim, Min-Su (Dept. of Computer Science and Information Engineering, Inha University) ;
  • Kwon, Koojoo (Dept. of Computer Science and Information Engineering, Inha University) ;
  • Shin, Byeoung-Seok (Dept. of Computer Science and Information Engineering, Inha University)
  • 김민수 (인하대학교 컴퓨터정보공학과) ;
  • 권구주 (인하대학교 컴퓨터정보공학과) ;
  • 신병석 (인하대학교 컴퓨터정보공학과)
  • Received : 2015.03.13
  • Accepted : 2015.03.31
  • Published : 2015.04.20

Abstract

This paper introduces effective noise removal method for medical ultrasound volume data. Ultrasound volume data need to be filtered because it has a lot of noise. Conventional 2d filtering methods ignore information of adjacent layers and conventional 3d filtering methods are slow or have simple filter that are not efficient for removing noise and also don't equally operate filtering because that don't take into account ultrasound' sampling character. To solve this problem, we introduce method that fast perform in parallel bilateral filtering that is known as good for noise removal and adjust proportionally window size depending on that's position. Experiments compare noise removal and loss of original data among average filtered or biliteral filtered or adaptive biliteral filtered ultrasound volume rendering images. In this way, we can more efficiently and correctly remove noise of ultrasound volume data.

이 논문에서는 의료용 초음파 볼륨 데이터의 잡음을 효과적으로 제거하기 위한 방법을 제안한다. 초음파 영상은 잡음이 심하여 필터링이 필요하다. 기존의 2차원 필터링은 인접한 슬라이스 간 정보를 무시하고 기존의 3차원 필터링은 속도가 느리거나 잡음 제거 효과가 떨어지는 필터를 적용하였고 또한 초음파 데이터의 샘플링 특성을 고려치 않아 균등하게 필터링 하지 않았다. 이를 해결하기 위해 잡음제거에 효과적인 양방향 필터를 병렬로 빠르게 처리하고 필터 영역에 따라 윈도우 크기를 달리하는 기법을 제안한다. 공간 필터의 합산영역 테이블을 이용하여 병렬로 빠르게 필터링하고 윈도우 크기는 필터 영역에 따라 비례적으로 결정한다. 실험은 평균 필터와 양방향 필터, 양방향 적응 필터를 적용한 초음파 볼륨 렌더링 영상에서 잡음 제거와 원본 손실 정도를 비교한다. 이렇게 하여 양방향 필터링을 빠르게 수행하면서 기존 보다 균등하게 필터링하여 잡음을 효과적으로 정확하게 제거할 수 있다.

Keywords

References

  1. V. Shamdasani, U. Bae, R. Managuli, Y. Kim, "Improving the visualization of 3D ultrasound data with 3D filtering", Proceedings of SPIE, Vol. 5744, pp. 455-461, 2005.
  2. S. Lim, B. Shin, "Hierarchical ${\sigma}$-octree for visualization of ultrasound datasets", Springer Berlin Heidelberg, Vol. 4223, pp. 1044-1053, 2006.
  3. K. Kwon, E. Lee, B. Shin, "GPU-accelerated 3D mipmap for real-time visualization of ultrasound volume data", Computers in Biology and Medicine, Vol. 43, pp. 1382-1389, 2013. https://doi.org/10.1016/j.compbiomed.2013.07.014
  4. Q. Yang, K. Tan, N. Ahuja, "Real-time O(1) Bilateral Filtering", Proceedings of CVPR, pp. 557-564, 2009.
  5. T.C. Aysal, K.E. Barner, "Rayleigh maximum likelihood filtering for specklereduction of ultrasound images", IEEE Transactions on Medical Imaging. Vol 26, pp. 712-727, 2007. https://doi.org/10.1109/TMI.2007.895484
  6. J.S. Lee, "Digital image enhancement and noise filtering by use of local statistics", IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. PAMI-2, pp.165-168, 1980. https://doi.org/10.1109/TPAMI.1980.4766994
  7. V. Frost, J. Stiles, K. Shanmugan, J. Holtzman, "A model for radar images and its application to adaptive digital filtering of multiplicative noise", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-4, pp. 157-165, 1982. https://doi.org/10.1109/TPAMI.1982.4767223
  8. D. Kuan, A. Sawchuck, T. Strand, P. Chavel, "Adaptive noise smoothing filter for images with signal dependent noise", IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. PAMI-7, pp. 165-177, 1985. https://doi.org/10.1109/TPAMI.1985.4767641
  9. C.-A. Kim, J.H. Oh, H.W. Park, "Efficient volume visualization of 3D ultrasound images", Proceedings of the SPIE, Vol. 3658, 1999.
  10. C.B. Burckhardt, "Speckle in ultrasound B-mode scans", IEEE Transactions on Sonics and Ultrasonics. Vol. 25, pp. 1-6, 1978. https://doi.org/10.1109/T-SU.1978.30978
  11. K.Z. Abd-Elmoniem, A.B. Youssef, Y.M. Kadah, "Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion", IEEE Transactions on Biomedical Engineering. Vol. 49, pp. 997-1014, 2002. https://doi.org/10.1109/TBME.2002.1028423
  12. A.N. Evans, M.S. Nixon, "Biased motion adaptive temporal filtering for speckle reduction in echocardiography", IEEE Transactions on Medical Imaging, Vol 15, pp. 39-50, 1996. https://doi.org/10.1109/42.481439
  13. Q. Sun, J.A. Hossack, J. Tang, S.T. Acton, "Speckle reducing anisotropic diffusion for 3D ultrasound images", Computerized Medical Imaging and Graphics, Vol. 28, pp. 461-470, 2004. https://doi.org/10.1016/j.compmedimag.2004.08.001
  14. S. Morihisa, M. Yasutaka, H. Yoshihiko, H. Akira, "Comparison of two-and threedimensional filtering methods to improve image quality in multiplanar reconstruction of cone-beam computed tomography", Oral Radiol, Vol. 25, pp. 154-158, 2009. https://doi.org/10.1007/s11282-009-0026-9
  15. Porikli. F, "Constant time O(1) bilateral filtering". Proceedings of CVPR, pp. 1-8, 2008.
  16. Hensley. J, Scheuermann. T, Coombe. G, Singh. M, Lastra. A, "Fast Summed-Area Table Generation and its Applications". Eurographics, Vol. 24, pp. 547-555 , 2005.
  17. Stephen. W, "Fractal and wavelet image compression techniques". SPIE Publication. pp. 155-156, 1999.