• Title/Summary/Keyword: 3-D flows

Search Result 473, Processing Time 0.029 seconds

Numerical Simulation on Interactions of Longitudinal Vortices in a Turbulent Boundary Layer (종방향 와동과 난류경계층의 상호작용에 관한 수치해석)

  • Yang Jang-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.637-644
    • /
    • 2005
  • This paper describes the numerical simulation of the interaction between longitudinal vortices ("common flow up") and a 3-D turbulent boundary layer over a flat plate To analyze the common flow up Produced from vortex generators. the flow field behind the vortex generators Is modeled by the information that is available from studies on a half-delta winglet. Also. the Reynolds-averaged Navier-Stokes equation for three-dimensional turbulent flows. together with a two-layer turbulence model to resolve the near-wall flow, is solved by the method of AF-ADI. The computational results predict that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall Also. the numerical results. such as Reynolds stresses. turbulent kinetic energy and skin friction characteristics generated from the vortex generators . are reasonably close to the experimental data.

A STUDY ON AN INTERFACE CAPTURING METHOD APPLICABLE TO UNSTRUCTURED MESHES FOR THE ANALYSIS OF FREE SURFACE FLOW (자유표면유동 해석을 위한 비정렬격자계에 적합한 경계면포착법 연구)

  • Myong, H.K.;Kim, J.E.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.14-19
    • /
    • 2006
  • A conservative finite-volume method for computing 3-D flow with an unstructured cell-centered method has been extended to free surface flows or two-fluid systems with topologically complex interfaces. It is accomplished by implementing the high resolution method(CICSAM) by Ubbink(1997) for the accurate capturing of fluid interfaces on unstructured meshes, which is based on the finite-volume technique and is fully conservative. The calculated results with the present method are compared to show the ease and accuracy with available numerical and experimental results reported in the literature.

Study of the Shock Structure of Supersonic, Dual, Coaxial, Jets (초음속 이중 동축 제트유동에서 발생하는 충격파 구조에 관한 연구)

  • Lee, K.H.;Lee, J.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.417-422
    • /
    • 2001
  • The shock structure of supersonic, dual, coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure of the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number of 2.0 and 3.0, and are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 4.0 and 10.0 and the assistant jet pressure ratio from 1.0 to 4.0. The results obtained show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter. The annular shock system is found depending the assistant and primary jet pressure ratios.

  • PDF

Numerical Study of Unsteady Mixed Convection in a Cavity with High Viscous Fluid (캐비티 내 고 점성유체의 비정상 흔합대류에 관한 수치해석적 연구)

  • Bae, D.S.;Cai, Long Ji
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.11-17
    • /
    • 2009
  • A numerical study of unsteady mixed convection in a cavity with high viscous fluid is presented. Finite volume method was employed for the discretization and PISO algorithm was used for calculating pressure term. The parameters governing the problem are the Rayleigh number ($10^3\;{\leq}\;Ra\;{\leq}\;10^5$), the Reynolds number (0 < Re $\leq$ 1), and the aspect ratio (0.5 $\leq$ AR $\leq$ 2). The fluid used is silicon oil, a high prandtl number fluid, Pr = 909.1. The results show velocity vectors and temperature distributions. It is found that the periodic flows in a cavity are observed at very low Reynolds numbers, and the period of periodic flow decreases with increasing Reynolds and Rayleigh numbers, and increases with increasing aspect ratio. Also, the Reynolds number range of periodic flow increases with increasing Rayleigh numbers and aspect ratio.

  • PDF

NUMERICAL ANALYSIS OF UNSTEADY VISCOUS FLOWS USING A FAST GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 신속 격자 변형 기법을 이용한 비정상 점성 유동 해석)

  • Lee, H.D.;Jung, M.S.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.33-48
    • /
    • 2009
  • In the present study, a fast grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were also simulated to demonstrate the robustness of the present grid deformation technique.

An Analysis on Three-dimensional Viscous Flow Fields in the Volute Casing of a Small-size Turbo-compressor (소형터보압축기 볼류트 내부의 3차원 점성 유동장 해석)

  • Kim, D.W.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.777-782
    • /
    • 2000
  • The flow fields in the volute casing of a small-size turbo-compressor at different flowrate (design point ${\pm}20%$) are studied by numerical analysis. The governing equations for three-dimensional steady viscous flow are solved using SIMPLE algorithm with commercial code of STAR-CD. Numerical results show that the three-dimensional flow pattern inside the volute casing of a small-size turbo-compressor is strongly influenced by secondary flows that are typically created by the curvature or the casing passages. The flow pattern in the casing also affects the performance of the turbo-compressor. In order to elucidate the loss mechanism through the volute, we prepared the secondary flow, velocity magnitude, and static pressure distribution at the four cross-sectional planes of the casing.

  • PDF

Numerical analysis of a three-dimensional turbulent wall-jet flow (3차원 난류 벽면제트 유동의 수치해석)

  • Ryu, S.Y.;Choi, D.H.;Kim, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.479-484
    • /
    • 2000
  • A Navier-stokes based finite volume method has been developed to analyze an incompressible, steady state, turbulent wall-jet flow. The standard k-e model, the RNG ${\kappa}-{\varepsilon}$ model and their nonlinear counterparts are adopted as a closure relationship. Comparison with the experimental data shows that a linear ${\kappa}-{\varepsilon}$ model performs satisfatorily for two-dimensional wall-jet flows. However, as the flow becomes three dimensional, the linear model fails to predict the spanwise jet growth accurately and the nonlinear model needs to be adopted to capture three-dimensional flow characteristics.

  • PDF

Numerical Investigation of the Effect of Turbine flow Passage Variation on the Turbine Performance (유로형상변화에 따른 터빈성능 변화의 수치적 해석)

  • Park, Pyun-Goo;Jeong, Eun-Hwan;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.481-487
    • /
    • 2005
  • A turbopump turbine consists of rotational part including a rotor and stationary part including nozzles and exit guide vanes, of which shape and relative position affect turbine performance owing to supersonic flows with prevailing unsteadiness. In this study, numerical 3-D flow calculations of the turbine with the different number of exit guide vanes and different relative position of each component are conducted and the effect of flow passage variations on turbine performance is analyzed.

  • PDF

Propagation Characteristics of Turbulent Premixed Flames in Nearly Isotropic Turbulent Flows (등방성 난류 유동장내 예혼합 화염의 자유 전파속도에 관한 실험적 연구)

  • Lee, S.J.;Noh, D.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.35-41
    • /
    • 2003
  • Propagation speeds of turbulent premixed flames have been measured in a pulsed-flame flow reactor which generates flames propagating in nearly isotropic turbulent flow field with U'/$S_L$ ranging from 1.2 to 5.3. The measurement involved a high-speed digital imaging at 1000 frames/second to capture the flame propagation motion. In addition to the flame speed measurements, flame perimeter ratio was measured for comparison. The observed flame propagation speed is high ranging from 5 to 20 times the laminar flame speed for the range of U'/$S_L$. The flames observed at extreme equivalence ratios exhibit intermittent propagation in that only a small fraction of ignited flame kernel resulted in full propagation of the flame. Also, at low equivalence ratios the flame speed decreased substantially even at high turbulence intensities.

  • PDF

Concentration distributions during flow of confined flowing polymer solutions at finite concentration: slit and grooved channel

  • Hernandez-Ortiz, Juan P.;Ma, Hong-Bo;de Pablo, Juan J.;Graham, Michael D.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.3
    • /
    • pp.143-152
    • /
    • 2008
  • Simulations of solutions of flexible polymer molecules during flow in simple or complex confined geometries are performed. Concentrations from ultradilute up to near the overlap concentration are considered. As concentration increases, the hydrodynamic migration effects observed in dilute solution unidirectional flows (Couette flow, Poiseuille flow) become less prominent, virtually vanishing as the overlap concentration is approached. In a grooved channel geometry, the groove is almost completely depleted of polymer chains at high Weissenberg number in the dilute limit, but at finite concentration this depletion effect is dramatically reduced. Only upon inclusion of hydrodynamic interactions can these phenomena be properly captured.