Concentration distributions during flow of confined flowing polymer solutions at finite concentration: slit and grooved channel

  • Hernandez-Ortiz, Juan P. (Department of Chemical and Biological Engineering, University of Wisconsin-Madison) ;
  • Ma, Hong-Bo (Department of Chemical and Biological Engineering, University of Wisconsin-Madison) ;
  • de Pablo, Juan J. (Department of Chemical and Biological Engineering, University of Wisconsin-Madison) ;
  • Graham, Michael D. (Department of Chemical and Biological Engineering, University of Wisconsin-Madison)
  • Published : 2008.09.30

Abstract

Simulations of solutions of flexible polymer molecules during flow in simple or complex confined geometries are performed. Concentrations from ultradilute up to near the overlap concentration are considered. As concentration increases, the hydrodynamic migration effects observed in dilute solution unidirectional flows (Couette flow, Poiseuille flow) become less prominent, virtually vanishing as the overlap concentration is approached. In a grooved channel geometry, the groove is almost completely depleted of polymer chains at high Weissenberg number in the dilute limit, but at finite concentration this depletion effect is dramatically reduced. Only upon inclusion of hydrodynamic interactions can these phenomena be properly captured.

Keywords

References

  1. Agarwal, U. S., A. Dutta, and R. A. Mashelkar, 1994, Migration of macromolecules under flow: the physical origin and engineering implications, Chem. Eng. Sci. 49, 1693 https://doi.org/10.1016/0009-2509(94)80057-X
  2. Banchio, A. J. and J. F. Brady, 2003, Accelerated Stokesian dynamics: Brownian motion, J. Chem. Phys. 118, 10323 https://doi.org/10.1063/1.1571819
  3. Batchelor, G., 1967, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge
  4. Bird, R. B., C. Curtiss, F. R. C. Armstrong, and O. Hassager, 1987, Dynamics of Polymer Liquids: Kinetic Theory, vol. 2, John Wiley & Sons, New York, 2nd Edition
  5. Chan, E. Y., N. M. Goncalves, R. A. Haeusler, A. J. Hatch, J. W. Larson, A. M. Maletta, G. R. Yantz, E. D. Carstea, M. Fuchs, G. G. Wong, S. R. Gullans and R. Gilmanshin, 2004, DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags, Genome Res. 14, 1137 https://doi.org/10.1101/gr.1635204
  6. Demmel, J. W., S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, 1999, A supernodal approach to sparse partial pivoting, SIAM J. Matrix Analysis and Applications 20, 720 https://doi.org/10.1137/S0895479895291765
  7. Deserno, M. and C. Holms, 1998, How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines, J. Chem. Phys. 109, 7678 https://doi.org/10.1063/1.477414
  8. Dimalanta, E. T., A. Lim, R. Runnheim, C. Lamers, C. Churas, D. K. Forrest, J. J. de Pablo, M. D. Graham, S. N. Coppersmith, S. Goldstein and D. Schwartz, 2004, A microfluidic system for large DNA molecule arrays, Anal. Chem. 76, 5293 https://doi.org/10.1021/ac0496401
  9. Fixman, M., 1978, Simulation of polymer dynamics. I. general theory, J. Chem. Phys. 69, 1527 https://doi.org/10.1063/1.436725
  10. Fixman, M., 1986, Construction of Langevin forces in the simulation of hydrodynamic interaction, Macromolecules 19, 1204 https://doi.org/10.1021/ma00158a043
  11. Frigo, M. and S. G. Johnson, 1997, Tech. Rep. MIT-LCS-TR-728, Massachusetts Institute of Technology, Boston
  12. Frigo, M. and S. G. Johnson, 2005, The design and implementation of FFTW3, Proceedings of the IEEE 93, 216
  13. Gardiner, C., 1985, Handbook of Stochastic Methods, Springer, Berlin
  14. Grassia, P., E. Hinch and L. Nitsche, 1995, Computer simulations of Brownian motion of complex systems, J. Fluid. Mech. 282, 373 https://doi.org/10.1017/S0022112095000176
  15. Han J. and H. G. Craighead, 2000, Separation of long DNA molecules in a microfabricated entropic trap array, Science 288, 1026 https://doi.org/10.1126/science.288.5468.1026
  16. Hasimoto H., 1959, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres, J. Fluid Mech. 5, 317 https://doi.org/10.1017/S0022112059000222
  17. Hernandez-Ortiz, J. P., H. Ma, J. J. de Pablo and M. D. Graham, 2006a, Cross stream-line migration on confined flowing polymer solutions: theory and simulation, Phys. Fluids 18, 123101 https://doi.org/10.1063/1.2397571
  18. Hernandez-Ortiz, J. P., J. J. de Pablo and M. D. Graham, 2006b, NlogN method for hydrodynamic interactions of confined flowing polymer systems: Brownian dynamics, J. Chem. Phys. 125, 164906 https://doi.org/10.1063/1.2358344
  19. Hernandez-Ortiz, J. P., J. J. de Pablo and M. D. Graham, 2007, Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry, Phys. Rev. Lett. 98, 140602 https://doi.org/10.1103/PhysRevLett.98.140602
  20. Hockney, R. W. and J. W. Eastwood, 1988, Computer Simulation Using Particles, Taylor & Francis, Bristol
  21. Jendrejack, R. M., M. D. Graham and J. J. de Pablo, 2000, Hydrodynamic interactions in long chain polymers: application of the Chebyshev polynomial approximation in stochastic simulations, J. Chem. Phys. 113, 2894 https://doi.org/10.1063/1.1305884
  22. Jendrejack, R. M., J. J. de Pablo and M. D. Graham, 2002, Stochastic simulations of DNA in flow: dynamics and the effects of hydrodynamic interactions, J. Chem. Phys. 116, 7752 https://doi.org/10.1063/1.1466831
  23. Jendrejack, R. M., D. C. Schwartz, M. D. Graham and J. J. de Pablo, 2003a, Effect of confinement on DNA dynamics in microfluidic devices, J. Chem. Phys. 119, 1165 https://doi.org/10.1063/1.1575200
  24. Jendrejack, R, M., E. T. Dimalanta, D. C. Schwartz, M. D. Graham and J. J. de Pablo, 2003b, DNA dynamics in a microchannel, Phys. Rev. Lett. 91, 038102 https://doi.org/10.1103/PhysRevLett.91.038102
  25. Jendrejack, R. M., D. C. Schwartz, J. J. de Pablo and M. D. Graham, 2004, Shear-induced migration in flowing polymer solutions: simulation of long-chain DNA in microchannels, J. Chem. Phys. 120, 2513 https://doi.org/10.1063/1.1637331
  26. Jing, J., J. Reed, J. Huang, X. Hu, V. Clarke, J. Edington, D. Housman, T. Anantharaman, E. Huff, B. Mishra, B. Porter, A. Shenker, E. Wolfson, C. Hiort, R. Kantor, C. Aston and D. Schwartz, 1998, Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules, Proc. Natl. Acad. Sci. U.S.A. 95, 8046
  27. Kan, C. W., C. P. Fredlake, E. A. S. Doherty and A. E. Barron, 2004, DNA sequencing and genotyping in miniaturized electrophoresis systems, Electrophoresis 25, 3564 https://doi.org/10.1002/elps.200406161
  28. Landau, L. and E. Lifshitz, 1987, Fluid Mechanics, Butterworth Heinemann, Oxford, 2nd Edition
  29. Ma, H. and M. D. Graham, 2005, Theory of shear-induced migration in dilute polymer solutions near solid boundaries, Phys. Fluids 17, 083103 https://doi.org/10.1063/1.2011367
  30. Mucha, P. Y., S.-Y. Tee, D. A. Weitz, B. I. Shraiman and M. P. Brenner, 2004, A model for velocity fluctuations in sedimentation, J. Fluid Mech. 501, 71 https://doi.org/10.1017/S0022112003006967
  31. Ottinger, H. C., 2005, Beyond Equilibrium Thermodynamics, Wiler-Interscience, New York
  32. Ottinger, H.C., 1996, Stochastic Processes in Polymeric Fluids, Springer, Berlin
  33. Power H. and L. C. Wrobel, 1995, Boundary Integral Methods in Fluid Mechanics, Computational Mechanics Publications, Southampton
  34. Pozrikidis, C., 1992, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, Cambridge
  35. Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, 1992, Numerical Recipes in Fortran 77, Cambridge University Press, Cambridge, 2nd Edition
  36. Reichl, L., 1998, A Modern Course in Statistical Physics, Wiley-Interscience, New York 2nd Edition
  37. Risken, H., 1989, The Fokker-Planck Equation, Springer, Berlin, 2nd Edition
  38. Roper, M. G., C. J. Easley, and J. P. Landers, 2005, Advances in polymerase chain reaction on microfluidic chips, Anal. Chem. 77, 3887
  39. Stoltz, C., J. J. de Pablo and M. D. Graham, 2006, Concentration dependence of shear and extensional rheology of polymer solutions: Brownian dynamics simulations, J. Rheol. 50, 137 https://doi.org/10.1122/1.2167468
  40. Storm, A. J., J. H. Chen, H. W. Zandbergen and C. Dekker, 2005, Translocation of double-strand DNA through a silicon oxide nanopore, Phys. Rev. E 71, 051903 https://doi.org/10.1103/PhysRevE.71.051903
  41. Streek, M., F. Schmid, T. T. Duong, D. Anselmetti and A. Ros, 2005, Two-state migration of DNA in a structured microchannel, Physical Rev. E 71, 011905 https://doi.org/10.1103/PhysRevE.71.011905
  42. Zwanzig, R., 2001, Nonequilibrium Statistical Mechanics, Oxford University Press, Oxford