• Title/Summary/Keyword: 3-D flow analysis

Search Result 1,514, Processing Time 0.029 seconds

Recovery of 3-D Motion from Time-Varying Image Flows

  • Wohn, Kwang-Yun;Jung, Soon-Ki
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.77-86
    • /
    • 1996
  • In this paper we deal with the problem of recovering 3-D motion and structure from a time-varying 2-D velocity vector field. A great deal has been done on this topic, most of which has concentrated on finding necessary and sufficient conditions for there to be a unique 3-D solution corresponding to a given 2-D motion. While previous work provides useful theoretical insight, in most situations the known algorithms have turned out to be too sensitive to be of much practical use. It appears that any robust algorithm must improve the 3-D solutions over time. As a step toward such algorithm, we present a method for recovering 3-D motion and structure from a given time-varying 2-D velocity vector field. The surface of the object in the scene is assumed to be locally planar. It is also assumed that 3-D velocity vectors are piecewise constant over three consecutive frames (or two snapshots of flow field). Our formulation relates 3-D motion and object geometry with the optical flow vector as well as its spatial and temporal derivatives. The linearization parameters, or equivalently, the first-order flow approximation (in space and time) is sufficient to recover rigid body motion and local surface structure from the local instantaneous flow field. We also demonstrate, through a sensitivity analysis carried out for synthetic and natural motions in space, that 3-D motion can be recovered reliably.

  • PDF

Development of the 3-D Bulk Motion Index for In-Cylinder Flow Induced by Induction System (I) - Based on the 3-D CFD Simulation Results - (흡기시스템을 통해 실린더로 유도되는 공기의 3차원 Bulk Motion Index 개발 (I) - 3차원 유동해석결과를 중심으로 -)

  • Yun, Jeong-Eui;Nam, Hyeon-Sik;Kim, Myung-Hwan;Min, Sun-Ki;Park, Pyeong-Wan;Kim, Ki-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1057-1065
    • /
    • 2006
  • In order to figure out the physical meaning of 3-D angular flow index for in-cylinder bulk motion, CFD analysis for the swirl and tumble steady flow test rig were made using commercial package STAR-CD. Computer simulations and rig tests on some kinds of induced flow conditions were carried out. Finally, based on the comparison between the simulated results and measured results, the physical meaning of 3-D angular flow index $|\longrightarrow_{N_B}|$, $\beta$ composed of swirl and tumble coefficients measured by steady flow test rig was described.

Study on Multi-Dimensional Simulation of the Flow and Filtration Characteristics in Diesel Particulate Filters (DPF의 배기가스 유동 및 포집에 관한 다차원 모델링 연구)

  • Kim, Dong-Kyun;Yoon, Cheon-Seog
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.60-68
    • /
    • 2010
  • In order to understand the flow and filtration characteristics in a wall-flow type DPF(Diesel Particulate Filter), 0-D, 1-D, and 3-D simulations are preformed. In this paper, three model are explained and validated with each other. Based on the comparisons with 1-D and 3-D results for the steady state solution, 3-D CFD analysis is preferable to 1-D for the prediction of wall velocity at the inlet and exit plane. Because PM loading process is transient state phenomena, the combination of full 3-D and time dependent simulation is crucial for the configuration of wall channels. New coupling technique, which is the connection between calculated permeability from 0-D lumped parameter model and UDF(User Defined Functions) of main solver, is proposed for the realisti

Integrated Process for Development of an Optimal Axial Flow Fan (Design, RP, Measurement, Injection Molding, Assembly) (최적 축류팬 개발을 위한 통합공정 (설계, 시제품제작, 측정, 금형가공, 사출, 조립))

  • 박성관;최동규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.201-209
    • /
    • 1998
  • To develop timely an optimal fan, a design system and a new manufacturing process used step by step have to be integrated. A small sized optimal fan for refrigerators, that was the goal on this project, was developed by the following principal processes. All processes are technologically linked in many directions: The existing fan was measured through reverse engineering. The measured data was used for the basic source of 3D design. The performance tests were carried and used as the data for the evaluation of the existing fan. Flow analysis by FANS-3D/sup [1]/ was performed at the given information (pressure drop and flow rate) to find out the configuration of optimal fan design. The flow patterns were investigated to measure the performance of fan through numerical experiment. The grid point data obtained by the above analysis turned into 3D high efficiency fan model by using CATIA. The product was manufactured by RP process (SLS, SLA) and tested the characteristic curves of the developed fan to compare with the existing fan. The modification of fan design were all examined to see any change in performance and checked to find any deficiency in assembling the fan into a duct. After the plastics flow analysis of the injection molding cycle to ensure acceptable quality fan, an optimal mold was processed by using tool-path for the newly designed fan.

  • PDF

Analysis of Performance Characteristics in the Counter and Parallel Type Plate Evaporator with Operating Methods (대향류와 평행류형 판형 증발기에서 운전방식에 따른 성능특성 분석)

  • Bae, Kyung-Jin;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.50-56
    • /
    • 2013
  • The analysis of performance characteristics was carried out in the plate type evaporator with counter and parallel flow. To investigate performance of evaporator with water inlet temperature and refrigerant mass flow rate were changed. As a result, when the inlet temperature of water is $8^{\circ}C$, capacity of parallel flow evaporator higher than counter flow is 0.35%. But as the inlet temperature of water rises from $8^{\circ}C$ to $16^{\circ}C$, capacity of counter flow type evaporator higher than parallel flow type is 0.12%, 0.27%, 1.1%, 1.6%, respectively. The findings showed that counter flow type evaporator has a larger capacity than those that were parallel flow type evaporator. As the refrigerant mass flow rate rises, capacity and pressure drop increases in the counter and parallel flow type evaporator.

Development of a High-efficiency and Low-noise Axial Flow Fan through Combining FanDAS and CFX codes (FanDAS-CFX 결합을 통한 고효율-저소음 축류 송풍기의 개발)

  • Lee, Chan;Kil, Hyun Gwon;Noh, Myung-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.37-41
    • /
    • 2012
  • High-efficiency and low-noise axial flow fan is developed by combining the FanDAS, a computerized axial fan design/performance analysis system, and CFD software(CFX). Based on fan design requirements, FanDAS conducts 3-D blade geometry design, quasi-3D flow/ performance analyses and noise evaluation by using through-flow analysis method and noise models for discrete frequency and broadband noise sources. Through the parametric studies of fan design variables using FandDAS, preliminary and baseline design is achieved for high efficiency and low noise fan, and then can be coupled with a CFD technique such as the CFX code for constructing final and optimized fan design. The FanDAS-CFX coupled system and its design procedure are applied to actual fan development practice. The FanDAS provides an optimized 3-D fan blade geometry, and its predictions on the performance and the noise level of designed fan are well agreed with actual test results.

Analysis of Flow in the Spillway of Flood Control Reservoir Using CFD Model (CFD 모형을 이용한 홍수조절지 여수로의 흐름해석)

  • Lee, Ho-Jin;An, Sang-Do;Jun, Kye-Won;Son, Yong-Koo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.51-57
    • /
    • 2007
  • In this study, the flow in the spillway of Gun-nam flood control reservoir were simulated by using FLOW-3D model. The discharge in the overflow weir and flow stability in approach channel were investigated with the original design plan. The results show that the scale of spillway is unsuitable and the flow in approach channel is unstable. To solve this problem, therefore, the alternative design plan were formulated. The flow in the spillway were simulated with the alternative design plan. The results show that the scale of spillway is suitable and the flow in approach channel is stable.

Analysis of Hydraulic effect on Removing Side Overflow Type Structures in Woo Ee Stream Basin (우이천 유역의 횡단 월류형 구조물 철거에 의한 수리영향 분석)

  • Moon, Young-Il;Yoon, Sun-Kwon;Chun, Si-Young;Kim, Jong-Suk
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.687-690
    • /
    • 2008
  • Currently, Stream flow analysis has been accomplished by one or two dimensional equations and was applied by simple momentum equations and fixed energy conservations which contain many reach uppermost limit. In this study, FLOW-3D using CFD(Computational Fluid Dynamics) was applied to stream flow analysis which can solve three dimensional RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as $k-\varepsilon$, RNG(Renomalized Group Theory) $k-\varepsilon$ and LES(Large Eddy Simulation). Numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow, water level pressure and eddy flows around the side overflow type structures at Jangwall bridge in urban stream.

  • PDF

Numerical Analysis on the Turbulent Flow of Compressor Cascades at High Incidence Angle

  • Jeong, Soo-in;Jeong, Gi-ho;Kim, Kui-soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.825-830
    • /
    • 2004
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc (DCA) compressor cascades. Two types of double-circular-arc cascades were used in this analysis. The appropriate turbulence model for compressor analysis was selected among the conventional turbulence models such as Baldwin-Lomax, k-$\varepsilon$ and k-$\varepsilon$ models. The results of current study were compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE/PWIM algorithm for collocated grid and hybrid scheme for the convective terms were the main features of numerical tools. As commonly known, turbulence modeling is very important for the prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. For selection of turbulence model, 2-D analysis was performed. And then, k-$\varepsilon$ turbulence model with wall function chosen as the reasonable turbulence model for 3-D calculation was used to increase the efficiency of computation times. A reasonable result of 3-D flow pattern passing through the double-circular-arc cascade was obtained.

  • PDF

Numerical flow analysis of the automobile with crosswind effects (측풍에 대한 자동차 주위의 유동 해석)

  • Kang D. M.;Jung Y. R.;Park W. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.144-154
    • /
    • 1999
  • This paper describes the flow analysis of the automobile with crosswind effects of $15^{\circ},\;30^{\circ}\;and\;45^{\circ}$ of yaw angle. The governing equations of the 3-D unsteady incompressible Navier-Stokes equations are solved by the iterative time marching scheme. The Chimera grid technique has been applied to efficiently simulate the flow around the side-view mirror. The A- and C-pillar vortex and other flow phenomena around the ground vehicle are evidently shown.

  • PDF