• Title/Summary/Keyword: 3-D display system

Search Result 602, Processing Time 0.023 seconds

Line of Sight Vector Estimation using UWB for Augmented Reality Based Indoor Location Monitoring System

  • Chun, Sebum;Seo, Jae-Hee;Lee, Sangwoo;Heo, Moon-Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.145-156
    • /
    • 2016
  • A variety of methods for indoor positioning systems have been underway to ensure the safety of emergency rescuers who are working in dangerous situations such as fire fighters. However, since most systems display locations of rescue workers in two-dimension (2D)-based maps, it is difficult for a commander located in the outside to recognize locations of rescuers inside the building intuitively. An augmented reality (AR)-based indoor positioning monitoring system can display locations of rescuer inside the building that can be seen by commanders to help intuitive recognition of positioning. To monitor AR-based indoor positioning, it is necessary to have an estimation technique of line of sight vector of observers. In the present study, an estimation technique of a line of sight vector using ultra-wide band tranceiver installed inside the indoor to trace locations is presented.

A Three-dimensional Magnetic Field Mapping System for Deflection Yoke of Cathode-Ray Tube

  • Park, K.H.;Yoon, M.;Kim, D.E.;Lee, S.M.;Joo, H.D.;Lee, S.D.;Yang, W.Y.
    • Journal of Information Display
    • /
    • v.3 no.4
    • /
    • pp.19-22
    • /
    • 2002
  • In this paper, we introduce an efficient three-dimensional magnetic field mapping system for a Deflection Yoke (DY) in Cathode-Ray Tube (CRT). A three-axis Hall probe mounted in a small cylindrical bar and three-stepping motors placed in a non-magnetic frame were utilized for the mapping. Prior to the mapping starts, the inner contour of DY was measured by a laser sensor to make a look-up table for inner shape of DY. Three-axis magnetic fields are then digitized by a three-dimensional Hall probe. The results of the mapping can be transformed into various output formats such as multi pole harmonics of magnetic fields. Field shape in one, two and three- dimensional spaces can also be displayed. In this paper, we present the features of this mapping device and some analysis results.

Human Performance Evaluation of Virtual Object Moving Task in the Different Temporal, Spatial and Pictorial Resolution of a Stereoscopic Display (가상현실 표시장치에서의 시간적, 공간적, 회화적 해상도에 따른 가상물체 이동작업의 인간성능 평가)

  • Park, Jae-Hee
    • IE interfaces
    • /
    • v.18 no.1
    • /
    • pp.82-87
    • /
    • 2005
  • Most of virtual reality systems ask users to control 3D objects or to navigate 3D world using 3D controllers. To maximize the human performance in the control, the design of virtual reality system and its input and output devices should be optimized. In this study, an experiment was designed to investigate the effects of three resolution factors of a virtual reality system on the human performance. Six subjects conducted the experiment for the factors; two frame rates, three spatial resolutions, and three pictorial contents. The result showed that the greater the spatial resolution was, the higher the human performance was. For the temporal resolution, fixed frame rate at 18 Hz was better than the varied maximized frame rate. For the pictorial contents, the virtual space with orientation cues marked the greatest performance than the other two conditions; the virtual space without any orientation cue and the virtual space like real world. These results could be applied for the design of virtual reality systems.

Tractor Performance Instrumentation System

  • Wan Ismail, Wan Ishak;Yahya, Azmi;Bardaie, Mohd. Zohadie
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.569-581
    • /
    • 1996
  • A microcomputer -based data acquistion system was designed and developed at Michigan State University , USA to conduct field data studies. The system designed for the research carried out used an Apple IIe microcomputer for collecting data on-board the tractor. An AII3 Analog to Digital (A/D_ convertor was chosen to interface each analog signal to the microcomputer. A commercially available Dj TPM II was employed to display information such as an engine speed, ground speed, percent drive wheel slip , distance travelled and area covered per hour. The frequency output from the radar unit was channeled through a frequency to voltage (F/V) convertor , so that AII3 Analog to Digital (A/D) convertor could read it. The fuel consumption was measured using on EMCO pdp-1 fuel flow meter attached to the engine fuel line. The draft of the tillage and other drag equipment was determined using strain gages attached to the drawbar of the tractor. The system was developed to collect the draft and fuel requirements for various farm equipment different kind of soils.

  • PDF

Computer-generated hologram based on the depth information of active sensor (능동형 센서의 깊이 정보를 이용한 컴퓨터 형성 홀로그램)

  • Kim, Sang-Jin;Kang, Hoon-Jong;Yoo, Ji-Sang;Lee, Seung-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.22-27
    • /
    • 2006
  • In this paper, we propose a method that can generate a computer-generated hologram (CGH) from the depth stream and color image outputs provided by an active sensor add-on camera. Distinguished from an existing holographic display system that uses a computer graphic model to generate CGH, this method utilizes a real camera image including a depth information for each object captured by the camera, as well as color information. This procedure consists of two steps that the acquirement of a depth-annotated image of real object, and generation of CGH according to the 3D information that is extracted from the depth cue. In addition, we display the generated CGH via a holographic display system. In experimental system we reconstruct an image made from CGH with a reflective LCD panel that had a pixel-pitch of 10.4um and resolution of 1408X1050.

A study on the development of living products using heat and color conversion treated woods (디자인 스튜디오 교육을 위한 CALM 시스템 개발에 관한 연구 -가구디자인 교육을 위한 시청각 기자재 디자인을 중심으로-)

  • In, Chi-Ho
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.5
    • /
    • pp.467-479
    • /
    • 2009
  • The high-tech computer technology developments have greatly affected the area of design education. Starting from the mid 80s, innovations in visual presentation methods have heightened with 2D computer graphic programs, CAD & 3D modeling, and Rapid Prototype that allows dimensional generation. The specialty and quality in design studio education have advanced due to the development in presentation methods such as Power Point and Keynote. But there are many problems with the current method of presenting the visual outcome in a data format using beam projectors, which is a vertical presenting method compared to the old studio study method of conducting discussions and reviews based on the substantial outcome. The essence of studio study that allows for comparisons and analysis by horizontally opening up the various work outcomes is being offset. Also the requirement for manual idea sketching work that plays an important role in the initial design phase continuing to decrease due to the digital working process dependence and cumbersome procedures in the presentation. In order to resolve this problem, the CALM system (Class Applied LCD Modular System) has been developed that replaces the method of attaching the sketches or renderings on the wall with a digital multi-display system. In a nutshell, individuals will upload the outcomes online and display them on the CALM system studio that is composed of 32 LCD (Columns: 4 $\times$ Rows: 8) monitors that are 19 inches in size so that various personnel can openly study the design outcomes. Also the central 42 inch PDP monitor that offers touch pad capability allows each design outcome to be described and examined by expanding. The concept phase of this development process has elevated to the production of an operating prototype that is being reviewed of its practicality. It is considered that the development of this system will decrease the extreme tendency of depending on digital operation but achieve revitalization of a more realistic and opened studio study environment compared to the individual consulting method of the old study approach.

  • PDF

A Study on Substrate Stage Temperature (기판스테이지 온도에 관한 연구)

  • Kim, Sun-Ki;Lee, Woo-Young;Kang, Heung-Suk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.4 s.17
    • /
    • pp.35-40
    • /
    • 2006
  • This paper shows that the effect of exposing on the top area and a solution which using a water circulation system. Semiconductor substrate stage is made from Aluminum and is repeated the sequence of exposing (150), turning OFF shutter, taking 30 sec. interval at the top area of stage. So the temperature of substrate temperature rises continuously. On this, we made a waterway at the inner part of the substrate stage and operated a water circulation system. We measured the temperature of a substrate stage surface with a thermocouple attached to the substrate stage. To analyze the top area's temperature, we used Analysis Program ANSYS for analysis and 3D CAD program Solid-Works for modeling.

  • PDF

I-V Modeling Based on Artificial Neural Network in Anti-Reflective Coated Solar Cells (반사방지막 태양전지의 I-V특성에 대한 인공신경망 모델링)

  • Hong, DaIn;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.130-134
    • /
    • 2022
  • An anti-reflective coating is used to improve the performance of the solar cell. The anti-reflective coating changes the value of the short-circuit current about the thickness. However, the current-voltage characteristics about the anti-reflective coating are difficult to calculate without simulation tool. In this paper, a modeling technique to determine the short-circuit current value and the current-voltage characteristics in accordance with the thickness is proposed. In addition, artificial neural network is used to predict the short-circuit current with the dependence of temperature and thickness. Simulation results incorporating the artificial neural network model are obtained using MATLAB/Simulink and show the current-voltage characteristic according to the thickness of the anti-reflective coating.

Robust Viewpoint Estimation Algorithm for Moving Parallax Barrier Mobile 3D Display (이동형 패럴랙스 배리어 모바일 3D 디스플레이를 위한 강인한 시청자 시역 위치 추정 알고리즘)

  • Kim, Gi-Seok;Cho, Jae-Soo;Um, Gi-Mun
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.817-826
    • /
    • 2012
  • This paper presents a robust viewpoint estimation algorithm for Moving Parallax Barrier mobile 3D display in sudden illumination changes. We analyze the previous viewpoint estimation algorithm that consists of the Viola-Jones face detector and the feature tracking by the Optical-Flow. The sudden changes in illumination decreases the performance of the Optical-flow feature tracker. In order to solve the problem, we define a novel performance measure for the Optical-Flow tracker. The overall performance can be increased by the selective adoption of the Viola-Jones detector and the Optical-flow tracker depending on the performance measure. Various experimental results show the effectiveness of the proposed method.

Inverse Characterization Method Based on 9 Channel Tone Response Curves for Display Device (디스플레이 장치를 위한 9개 채널 계조 응답 곡선에 기반한 역 특성화 기법)

  • Im, Hye-Bong;Cho, Yang-Ho;Park, Kee-Hyon;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.85-94
    • /
    • 2005
  • Display characterization, deriving the relationship between digital input values and the corresponding CIEXYZ tri-stimulus values, is important to reproduce the accurate color in color management system. The relationship can be estimated from the nine channel TRCs(tone response curves) and the result of this characterization method is better than that of using three channel TRCs. However, the inverse display characterization using nine channel TRCs cannot be directly inverted because the CIEXYZ values corresponding to each of RGB values are inseparable. Accordingly, inverse display characterization is usually implemented by the 3D-LUT (look-up table) method. Although the result of 3B-LUT is accurate, creating the 3D-LUT requires a lot of memory space and considerable amount of measurements. Therefore the inverse characterization method is proposed based on the modeling of channel-dependent values and nine channel inverse process based on the GOG(gain, offset gamma) model. The proposed method enhances the accuracy of display characterization and reduces the complexity and the number of measurements data required for accuracy in 3-D LUT.