• Title/Summary/Keyword: 3-D contact

Search Result 989, Processing Time 0.031 seconds

Supercritical Fluid Extraction of Sesame Oil with High Content of Sesamol (초임계 유체를 이용한 세사몰 고함유 참기름 추출 연구)

  • Ju Young-Woon;Son Min-Ho;Lee Ju-Suk;Lee Moon-Young;Byun Sang Yo
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.205-209
    • /
    • 2005
  • Studies for the commercial production of sesame oil using th supercriticl carbon dioxide were made. Characteristics of sesame oil containing one of natural antioxidant 'sesamol', which only exist at sesame seed were also studied during the supercritical fluid extraction. Among the various factors influencing the sesamol contents in the sesame oil, the roasting time and temperature were checked, because sesamol can be converted from sesamol in through pyrolysis. We found that the sesamol content was increased rapidly under the condition of roasting temperature over $200^{\circ}C$ with longer roasting time. The sesamol content was increased as the temperature and pressure increased, which was caused by increase of solubility of sesamol against sesamol oil. And the sesamol content was increased also with lower speed of supercritical fluid, which increased the contact time with the raw material. The sesamol content was also increased using water increase up to $1\%$ as the entrainer. When the extraction performance with the supercritical fluid was compared to the conventional compressed extraction, the sesamol content was increased up to 11.5 times with the entrainer.

Experimental and Numerical Studies on Application of Industrial Explosives to Explosive Welding, Explosive Forming, Shock Powder Consolidation (산업용 폭약을 이용한 폭발용접, 폭발성형과 충격분말고화에 관한 실험 및 수치해석적 연구)

  • Kim, Young-Kook;Kang, Seong-Seung;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Theoretical backgrounds on the experimental methods of explosive welding, explosive forming and shock consolidation of powders are introduced. Explosive welding experiments of titanium (Ti) and stainless steel (SUS 304) plate were carried out. It was revealed that a series of waves of metal jet are generated in the contact surface between both materials; and that the optimal collision velocity and collision angle is about 2,100~2,800 m/s and $15{\sim}20^{\circ}$, respectively. Also, explosive forming experiments of Al plate were performed and compared to a conventional press forming method. The results confirmed that the shock-loaded Al plate has a larger curvature deformation than those made using conventional press forming. For shock consolidation of powders, the propagation behaviors of a detonation wave and underwater shock wave generated by explosion of an explosive are investigated by means of numerical calculation. The results revealed that the generation and convergence of reflected waves occur at the wall and center position of water column, and also the peak pressure of the converged reflected waves was 20 GPa which exceeds the detonation pressure. As results from the consolidation experiments of metal/ceramic powders ($Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$), shock-consolidated $Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$ bulk without cracks was successfully obtained by adapting the suggested water container and strong bonding between powder particles was confirmed through microscopic observations.

Adhesion Behavior of Chondrocyte and Osteoblast on Surface-Modified Biodegradable PLLA Films and Scaffolds (표면개질된 생분해성 PLLA 필름 및 지지체의 연골세포와 조골세포 점착거동)

  • Choi, Ji-Yeon;Jung, Hyun-Jung;Park, Bang-Ju;Joung, Yoon-Ki;Park, Kwi-Deok;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.357-363
    • /
    • 2012
  • Surface-modified poly(L-lactic acid) (PLLA) films and scaffolds were treated with plasma discharge in oxygen gas and subsequently subjected to $in$ $situ$ grafting of acrylic acid (AA) in order to increase the cell compatibility. The surface of AA-grafted PLLA was converted to hydroxyapatite (HA)-deposited PLLA in stimulated body fluid (SBF). After the samples were immersed in phosphate-buffered saline (PBS), fetal bovine serum (FBS), normal saline, or cell medium, the water contact angles were significantly reduced on the surface of HA-deposited PLLA. Chondrocyte and osteoblast showed a higher attachment and cell proliferation on HA-deposited surfaces and in particular, it was confirmed that chondrocyte was considerably influenced by HA. However, osteoblast showed better cell proliferation on the surfaces immersed in FBS, cell medium or HA-deposited surface. In addition, the cell proliferation in 3D scaffolds was much higher than that on film type, irrespective of chondrocyte and osteoblast. Therefore, such surface-modified PLLAs are expected to be useful as organic-inorganic hybrid scaffolds in the regeneration of cartilage and bone.

Stress distribution of implants with external and internal connection design: a 3-D finite element analysis (내측 연결 및 외측 연결 방식으로 설계된 임플란트의 3차원적 유한요소 응력 분석)

  • Chung, Hyunju;Yang, Sung-Pyo;Park, Jae-Ho;Park, Chan;Shin, Jin-Ho;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.189-198
    • /
    • 2017
  • Purpose: This study aims to analyze the stress distribution of mandibular molar restoration supported by the implants with external hex and internal taper abutment connection design. Materials and Methods: Models of external connection (EXHEX) and internal connection (INCON) implants, corresponding abutment/crowns, and screws were developed. Supporting edentulous mandibular bony structures were designed. All the components were assembled and a finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. A total of 120 N static force was applied both by axial (L1) and oblique (L2) direction. Results: Peak von Mises stresses produced in the implants by L2 load produced 6 - 15 times greater than those by L1 load. The INCON model showed 2.2 times greater total amount of crown cusp deflection than the EXHEX model. Fastening screw in EXHEX model and upside margin of implant fixture in INCON model generated the peak von Mises stresses by oblique occlusal force. EXHEX model and INCON model showed the similar opening gap between abutment and fixture, but intimate sealing inside the contact interface was maintained in INCON model. Conclusion: Oblique force produced grater magnitudes of deflection and stress than those by axial force. The maximum stress area at the implant was different between the INCON and EXHEX models.

A Study on the Development of Intelligent Markup Indicator (IMI) Technology for Underground Facilities Management Using IoT (IoT를 이용한 지하매설물관리용 지능형표지기(IMI) 기술개발에 관한 연구)

  • Kim, Tai-Dal
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.129-136
    • /
    • 2017
  • Geographic Information System The geographic information system (GIS) has been limited to the government and some public sectors. Recently, the market has been diversified by combining with other areas such as mobile and CRM (Customer Relationship Management). The development direction of GIS technology in the 21st century is Web GIS, 3D GIS, mobile GIS, LBS, etc. as general technology for GIS application system development and spatial information service. In this study, we developed a new concept marking nail (a marking nail with built - in intelligent storage memory device) from the function of simple positioning of a marking nail related to a previously used underground item,, Burial depth, pipe thickness, piping material, management agency, contractor, contact, etc.) and store it in DB server, if necessary.Make it available in the right place. Through this research, it is possible to prevent and minimize various accidents caused by irregular excavation works, etc., and to provide information for establishing countermeasures related to sink holes. In order to provide systematic and reliable information on underground burial management, it was proposed to input information conveniently in the field, and the purpose was to reduce the incidence of buried underground pipes absolutely.

Variation of Nanoindentation Curve due to Wear of Indenter Apex and Its Correction Method (압입자 첨단마모에 따른 나노압입곡선의 변화 및 이의 보정기법)

  • Lee, Yun-Hee;Kim, Yong-Il;Park, Jong Seo;Kim, Kwang Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.129-137
    • /
    • 2013
  • A force calibration of a nanoindenter and a 3D morphology observation of indenters were carried out in this study. A microbalance calibrated with standard weights was used for measuring the loads generated by a nanoindenter. The indentation load could be calibrated from the ratio of measured and generated loads and the first contact load also could be detected from the microbalance data. By analyzing atomic force microscopy images of two indenters, curvature radii of apexes were determined by $19.71{\pm}3.03$ and $1043.94{\pm}50.91$ nm, respectively, for the nearly new indenter A and the severly worn indenter B. Corresponding bluntness depths were estimated by 1.22 and 64.56 nm for the both indenters by overlapping their profiles on the perfect pyramidal shape. In addition, nanoindentation curves obtained from a fused silica reference material with the both indenters showed a depth difference corresponding to the bluntness depth difference along the indentation depth axis. By shifting amounts of the bluntness depths along the horizontal axis, whole nanoindentation curves overlapped on themselves and resulted in nanohardness values consistent within 1.11 % without considering the complex indenter area function of each indenter.

Effects of ibuprofen-loaded TiO2 nanotube dental implants in alloxan-induced diabetic rabbits

  • Kim, Young-Gyo;Kim, Wan-Tae;Jung, Bo Hyun;Yoo, Ki-Yeon;Um, Heung-Sik;Chang, Beom-Seok;Lee, Jae-Kwan;Choi, Won-Youl
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.5
    • /
    • pp.352-363
    • /
    • 2021
  • Purpose: Some systemic conditions, especially diabetes mellitus (DM), adversely affect dental implant success. This study aimed to investigate the effects of ibuprofen-loaded TiO2 nanotube (ILTN) dental implants in alloxan-induced diabetic rabbits. Methods: Twenty-six New Zealand white rabbits were treated with alloxan monohydrate to induce DM. At 2 weeks following DM induction, 3 types of implants (sandblasted, large-grit, and acid-etched [SLA], ILTN, and machined) were placed into the proximal tibia in the 10 rabbits that survived following DM induction. Each type of implant was fitted randomly in 1 of the holes (round-robin method). The animals were administered alizarin (at 3 weeks) and calcein (at 6 weeks) as fluorescent bone markers, and were sacrificed at 8 weeks for radiographic and histomorphometric analyses. Results: TiO2 nanotube arrays of ~70 nm in diameter and ~17 ㎛ in thickness were obtained, and ibuprofen was loaded into the TiO2 nanotube arrays. A total of 26 rabbits were treated with alloxan monohydrate and only 10 rabbits survived. The 10 surviving rabbits showed a blood glucose level of 300 mg/dL or higher, and the implants were placed in these diabetic rabbits. The implant stability quotient (ISQ) and bone-to-implant contact (BIC) values were significantly higher in the ILTN group (ISQ: 61.8, BIC: 41.3%) and SLA group (ISQ: 62.6, BIC: 46.3%) than in the machined group (ISQ: 53.4, BIC: 20.2%), but the difference in the BIC percentage between the SLA and ILTN groups was not statistically significant (P=0.628). However, the bone area percentage was significantly higher in the ILTN group (78.0%) than in the SLA group (52.1%; P=0.000). Conclusions: The: ILTN dental implants showed better stability (ISQ) and BIC than the machined implants; however, these values were similar to the commercially used SLA implants in the 2-week diabetic rabbit model.

Stress dissipation characteristics of four implant thread designs evaluated by 3D finite element modeling (4종 임플란트 나사산 디자인의 응력분산 특성에 대한 3차원 유한요소해석 연구)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • Purpose: The aim was to investigate the effect of implant thread designs on the stress dissipation of the implant. Materials and methods: The threads evaluated in this study included the V-shaped, buttress, reverse buttress, and square-shaped threads, which were of the same size (depth). Building four different implant/bone complexes each consisting of an implant with one of the 4 different threads on its cylindrical body ($4.1mm{\times}10mm$), a force of 100 N was applied onto the top of implant abutment at $30^{\circ}$ with the implant axis. In order to simulate different osseointegration stages at the implant/bone interfaces, a nonlinear contact condition was used to simulate immature osseointegration and a bonding condition for mature osseointegration states. Results: Stress distribution pattern around the implant differed depending on the osseointegration states. Stress levels as well as the differences in the stress between the analysis models (with different threads) were higher in the case of the immature osseointegration state. Both the stress levels and the differences between analysis models became lower at the completely osseointegrated state. Stress dissipation characteristics of the V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration. These results indicated that implant thread design may have biomechanical impact on the implant bed bone until the osseointegration process has been finished. Conclusion: The stress dissipation characteristics of V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration.

Characterization of Dopamine Receptor D4 Gene Polymorphisms in Horses (말에서 Dopamine Receptor D4 유전자의 변이 특성 분석)

  • Choi, Jae-Young;Choi, Yeonju;Lee, Jongan;Shin, Sang-Min;Yoon, Minjung;Kang, Yong-Jun;Shin, Moon-Cheol;Yoo, Ji-Hyun;Kim, Hyeonah;Cho, In-Cheol;Yang, Byoung-Chul;Kim, Nam-Young
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.29-35
    • /
    • 2022
  • This study was conducted to analyze the genetic polymorphisms of dopamine receptor D4 (DRD4) in horse breeds and its association with substrate characteristics in Jeju crossbreds (Jeju Horse × Thoroughbred). Polymorphisms in DRD4 are candidate genes associated with temperament in various mammals, including humans. Single nucleotide polymorphism (SNP) G292A in the exon 3 region of the horse DRD4 has a reported association with curiosity and vigilance in thoroughbreds. Sanger sequencing was used to identify polymorphisms of the mutations in DRD4 in three horse breeds. The SNP frequency in Jeju horses was significantly different from the frequency in other breeds. Character evaluation, conducted in the Jeju crossbreds and scored using a temperament test and contact test, revealed a high correlation between each test. Comparison of the polymorphism in the DRD4 of horses and the results of the character evaluation revealed lower scores for all temperaments in horses carrying allele A. Comparison of the SNP of G292A and blood dopamine levels in Jeju crossbreds showed 2.87 times higher levels for the GA type than for the GG type. This study identified an association between DRD4 polymorphism and various test methods for evaluating horse temperament and levels of neurotransmitters. Further research could validate the use of this gene as a genetic marker for character evaluation.

Study on Evaluation of Effective Thermal Conductivity of Unsaturated Soil Using Average Capillary Pressure and Network Model (평균 모세관압과 네트워크 모델을 이용한 불포화토의 유효 열전도도 산정에 관한 연구)

  • Han, Eunseon;Lee, Chulho;Choi, Hyun-Jun;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.93-107
    • /
    • 2013
  • Thermal conduction of the particulate composites or granular materials can be widely used in porous materials and geotechnical engineering. And it has continued to develop "effective thermal conductivity" of medium by modeling energy relationship among particles in medium. This study focuses on the development of the effective thermal conductivity at the unsaturated conditions of soils using the modified network model approach assisted by synthetic 3D random packed systems (DEM method, Discrete Element Method) at the particle scale. To verify the network model, three kinds of glass beads and the Jumunjin sand are used to obtain experimental values at various unsaturated conditions. The PPE (Pressure Plate Extractor) test is then performed to obtain SWCC (Soil-Water Characteristic Curve) of soil samples. In the modified network model, SWCC is used to adjust the equivalent radius of thermal cylinder at contact area between particles. And cutoff range parameter to define the effective zone is also adjusted according to the SWCC at given conditions. From a series of laboratory tests and the proposed network model, the modified network model which adopts a SWCC shows a good agreement in modeling thermal conductivity of granular soils at given conditions. And an empirical correlation between the fraction of the mean radius (${\chi}$) and thermal conductivity at given saturated condition is provided, which can be used to expect thermal conductivity of the granular soils, to estimate thermal conductivity of granular soils.