DOI QR코드

DOI QR Code

Stress dissipation characteristics of four implant thread designs evaluated by 3D finite element modeling

4종 임플란트 나사산 디자인의 응력분산 특성에 대한 3차원 유한요소해석 연구

  • Nam, Ok-Hyun (Department of Dentisty, Busan Paik Hospital, Inje University) ;
  • Yu, Won-Jae (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Kyung, Hee-Moon (Department of Orthodontics, School of Dentistry, Kyungpook National University)
  • 남옥현 (인제대학교 부산백병원 치과) ;
  • 유원재 (경북대학교 치의학전문학원 치과교정학교실) ;
  • 경희문 (경북대학교 치의학전문학원 치과교정학교실)
  • Received : 2015.01.14
  • Accepted : 2015.02.24
  • Published : 2015.04.30

Abstract

Purpose: The aim was to investigate the effect of implant thread designs on the stress dissipation of the implant. Materials and methods: The threads evaluated in this study included the V-shaped, buttress, reverse buttress, and square-shaped threads, which were of the same size (depth). Building four different implant/bone complexes each consisting of an implant with one of the 4 different threads on its cylindrical body ($4.1mm{\times}10mm$), a force of 100 N was applied onto the top of implant abutment at $30^{\circ}$ with the implant axis. In order to simulate different osseointegration stages at the implant/bone interfaces, a nonlinear contact condition was used to simulate immature osseointegration and a bonding condition for mature osseointegration states. Results: Stress distribution pattern around the implant differed depending on the osseointegration states. Stress levels as well as the differences in the stress between the analysis models (with different threads) were higher in the case of the immature osseointegration state. Both the stress levels and the differences between analysis models became lower at the completely osseointegrated state. Stress dissipation characteristics of the V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration. These results indicated that implant thread design may have biomechanical impact on the implant bed bone until the osseointegration process has been finished. Conclusion: The stress dissipation characteristics of V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration.

목적: 4종의 임플란트 나사산이 골유착 중간과정과 완료 이후 단계에서 보이는 응력분산 특성을 평가하고자 한다. 재료 및 방법: 실린더형 몸체(외경 4.1 mm 길이 10 mm)에 이전연구에서 식립 특성이 우수하게 평가되었던 V-자형 나사산과 다른 3종(buttress형, reverse buttress형, square형)의 나사산을 가진 4종의 임플란트가 악골에 매식된 복합체 모델을 CAD 프로그램으로 제작하였다. 지대주 상부에 100 N의 힘을 임플란트 장축과 30도 방향으로 부하하고 인접골 응력분포를 유한요소 해석하였다. 응력분산 특성이 골유착 진척 상태에 따라 달라질 수 있다는 가정하에 임플란트/골 계면을 골유착 미숙단계와 골유착 완료단계의 두 가지로 구분하여 분석하였다. 골유착 미숙단계는 임플란트/골 계면을 비선형 contact 조건(마찰계수 0.3)으로 모사하였고, 골유착이 완료된 단계에 대해서는 계면이 충분히 결합된 것으로 간주하여 접합(bonding) 조건을 부여하였다. 결과: 골유착 정도에 따라 임플란트의 응력분산 특성이 달라졌다. 골유착 미숙단계에서는 골응력과 나사산에 따른 응력 특성의 차이도 상대적으로 컸고 골유착 완료단계에서는 골응력의 절대값과 나사산간 차이가 모두 감소하였으며, V-자형 나사산의 응력분산 특성은 골유착 미숙 및 완료단계에서 모두 4종 나사산의 중간 정도였다. 이로부터 나사산 디자인의 차이는 임플란트 식립후 골유착이 진행되는 과정까지 영향을 미치며, 일단 골유착이 완료되면 나사산의 영향은 급격히 감소할 것임을 추론할 수 있었다. 결론: V-자형 나사산의 응력분산 특성은 골유착이 이루어지는 단계와 완료된 이후 단계 전기간 동안 4종 나사산의 중간 정도였다.

Keywords

References

  1. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52:155-70. https://doi.org/10.3109/17453678108991776
  2. Friberg B, Jemt T, Lekholm U. Early failures in 4,641 consecutively placed Branemark dental implants: a study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants 1991;6:142-6.
  3. Javed F, Ahmed HB, Crespi R, Romanos GE. Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interv Med Appl Sci 2013;5:162-7.
  4. Kim SH, Kim S, Lee KW, Han DH. The effects of local factors on the survival of dental implants: A 19 year retrospective study. J Korean Acad Prosthodont 2010;48:28-40. https://doi.org/10.4047/jkap.2010.48.1.28
  5. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11:491-501.
  6. Misch CE. Dental implant prosthetics. St. Louis, Mosby; 2005. p. 322-47.
  7. Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, Choi YC, Baik HK, Ku Y, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002;29:565-74. https://doi.org/10.1046/j.1365-2842.2002.00891.x
  8. Kong L, Hu K, Li D, Song Y, Yang J, Wu Z, Liu B. Evaluation of the cylinder implant thread height and width: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2008;23:65-74.
  9. Seo YH, Vang MS, Yang HS, Park SW, Park HO, Lim HP. Threedimentional finite element analysis of stress distribution for different implant thread slope. J Korean Acad Prosthodont 2007;45:482-91.
  10. Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 2003;36:1247-58. https://doi.org/10.1016/S0021-9290(03)00164-7
  11. Geng JP, Ma QS, Xu W, Tan KB, Liu GR. Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil 2004;31:233-9. https://doi.org/10.1046/j.0305-182X.2003.01213.x
  12. Esposito M, Thomsen P, Ericson LE, Lekholm U. Histopathologic observations on early oral implant failures. Int J Oral Maxillofac Implants 1999;14:798-810.
  13. Raghavendra S, Wood MC, Taylor TD. Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants 2005;20:425-31.
  14. Yu WJ, Ha SJ, Cho JH. Effects of implant thread profile on insertion stress generation in cortical bone studied by dynamic finite element simulation. J Korean Acad Prosthodont 2014;52:279-86. https://doi.org/10.4047/jkap.2014.52.4.279
  15. Schwitalla AD, Abou-Emara M2, Spintig T, Lackmann J2, Muller WD3. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech 2015;48:1-7. https://doi.org/10.1016/j.jbiomech.2014.11.017
  16. Van Oosterwyck H, Duyck J, Vander Sloten J, Van der Perre G, De Cooman M, Lievens S, Puers R, Naert I. The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. Clin Oral Implants Res 1998;9:407-18. https://doi.org/10.1034/j.1600-0501.1996.090606.x
  17. Sevimay M, Turhan F, Kilicarslan MA, Eskitascioglu G. Threedimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent 2005;93:227-34. https://doi.org/10.1016/j.prosdent.2004.12.019
  18. Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. 3DFEA of osseointegration percentages and patterns on implant-bone interfacial stresses. J Dent 1997;25:485-91. https://doi.org/10.1016/S0300-5712(96)00061-9
  19. Huang HL, Hsu JT, Fuh LJ, Tu MG, Ko CC, Shen YW. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study. J Dent 2008;36:409-17. https://doi.org/10.1016/j.jdent.2008.02.015
  20. Mellal A, Wiskott HW, Botsis J, Scherrer SS, Belser UC. Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clin Oral Implants Res 2004;15:239-48. https://doi.org/10.1111/j.1600-0501.2004.01000.x
  21. Rubin PJ, Rakotomanana RL, Leyvraz PF, Zysset PK, Curnier A, Heegaard JH. Frictional interface micromotions and anisotropic stress distribution in a femoral total hip component. J Biomech 1993;26:725-39. https://doi.org/10.1016/0021-9290(93)90035-D
  22. Albrektsson T, Berglundh T, Lindhe J. Osseointegration: Historic background and current concepts. In Lindhe J, Karring T, Lang NP (eds). Clinical periodontology and implant dentistry. Oxford; Blackwell Munksgaard; 2003. p. 809-20.
  23. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998;11:391-401.
  24. Viceconti M, Muccini R, Bernakiewicz M, Baleani M, Cristofolini L. Large-sliding contact elements accurately predict levels of boneimplant micromotion relevant to osseointegration. J Biomech 2000;33:1611-8. https://doi.org/10.1016/S0021-9290(00)00140-8
  25. Wehner T, Penzkofer R, Augat P, Claes L, Simon U. Improvement of the shear fixation stability of intramedullary nailing. Clin Biomech (Bristol, Avon) 2011;26:147-51. https://doi.org/10.1016/j.clinbiomech.2010.09.009
  26. Bardyn T, Gedet P, Hallermann W, Buchler P. Prediction of dental implant torque with a fast and automatic finite element analysis: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:594-603. https://doi.org/10.1016/j.tripleo.2009.11.010
  27. Lin D, Li Q, Li W, Ichim I, Swain M. Evaluation of dental implant induced bone remodelling by using a 2D finite element model. Proceedings of the 5th Australasian Congress on Applied Mechanics (ACAM 2007). 2007 Dec 10-12, Brisbane; Australia; p. 301-6.
  28. Atieh MA, Shahmiri RA. Evaluation of optimal taper of immediately loaded wide-diameter implants: a finite element analysis. J Oral Implantol 2013;39:123-32. https://doi.org/10.1563/AAID-JOI-D-11-00104
  29. Frost HM. Bone's mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003;275:1081-101.
  30. Geng JP, Ma QS, Xu W, Tan KB, Liu GR. Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil 2004;31:233-9. https://doi.org/10.1046/j.0305-182X.2003.01213.x
  31. Kong L, Liu B, Li D, Song Y, Zhang A, Dang F, Qin X, Yang J. Comparative study of 12 thread shapes of dental implant designs: a three-dimensional finite element analysis. World J Model Simul 2006;2:134-40.

Cited by

  1. DYNAMIC SIMULATION AND FINITE ELEMENT ANALYSIS OF THE MAXILLARY BONE INJURY AROUND DENTAL IMPLANT DURING CHEWING DIFFERENT FOOD vol.28, pp.2, 2016, https://doi.org/10.4015/s1016237216500149