• Title/Summary/Keyword: 3-D Segmentation

Search Result 451, Processing Time 0.026 seconds

Fast Mode Decision using Global Disparity Vector for Multi-view Video Coding (다시점 영상 부호화에서 전역 변이 벡터를 이용한 고속 모드 결정)

  • Han, Dong-Hoon;Cho, Suk-Hee;Hur, Nam-Ho;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.328-338
    • /
    • 2008
  • Multi-view video coding (MVC) based on H.264/AVC encodes multiple views efficiently by using a prediction scheme that exploits inter-view correlation among multiple views. However, with the increase of the number of views and use of inter-view prediction among views, total encoding time will be increased in multiview video coding. In this paper, we propose a fast mode decision using both MB(Macroblock)-based region segmentation information corresponding to each view in multiple views and global disparity vector among views in order to reduce encoding time. The proposed method achieves on average 40% reduction of total encoding time with the objective video quality degradation of about 0.04 dB peak signal-to-noise ratio (PSNR) by using joint multi-view video model (JMVM) 4.0 that is the reference software of the multiview video coding standard.

Development of Deep Learning-based Automatic Classification of Architectural Objects in Point Clouds for BIM Application in Renovating Aging Buildings (딥러닝 기반 노후 건축물 리모델링 시 BIM 적용을 위한 포인트 클라우드의 건축 객체 자동 분류 기술 개발)

  • Kim, Tae-Hoon;Gu, Hyeong-Mo;Hong, Soon-Min;Choo, Seoung-Yeon
    • Journal of KIBIM
    • /
    • v.13 no.4
    • /
    • pp.96-105
    • /
    • 2023
  • This study focuses on developing a building object recognition technology for efficient use in the remodeling of buildings constructed without drawings. In the era of the 4th industrial revolution, smart technologies are being developed. This research contributes to the architectural field by introducing a deep learning-based method for automatic object classification and recognition, utilizing point cloud data. We use a TD3D network with voxels, optimizing its performance through adjustments in voxel size and number of blocks. This technology enables the classification of building objects such as walls, floors, and roofs from 3D scanning data, labeling them in polygonal forms to minimize boundary ambiguities. However, challenges in object boundary classifications were observed. The model facilitates the automatic classification of non-building objects, thereby reducing manual effort in data matching processes. It also distinguishes between elements to be demolished or retained during remodeling. The study minimized data set loss space by labeling using the extremities of the x, y, and z coordinates. The research aims to enhance the efficiency of building object classification and improve the quality of architectural plans by reducing manpower and time during remodeling. The study aligns with its goal of developing an efficient classification technology. Future work can extend to creating classified objects using parametric tools with polygon-labeled datasets, offering meaningful numerical analysis for remodeling processes. Continued research in this direction is anticipated to significantly advance the efficiency of building remodeling techniques.

Production and Usage of Korean Human Information in KISTI (KISTI에 있어서 한국인 인체정보의 생산과 활용)

  • Lee, Sang-Ho;Lee, Seung-Bock
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.416-421
    • /
    • 2010
  • The KISTI (Korea Institute of Science and Technology Information) began to produce the Korean human information called Visible Korean and Digital Korean since 2000 because there was no human information in Korea which could represent the physical characteristics of Korean human body. The Visible Korean consists of CT, MR, sectioned and segmented images of Korean human body. We obtained the serially sectioned images by grinding the Korean cadaver in horizontal direction and segmented these images by outlining the inner organs of human. We have produced the sectioned images of Korean male whole body, male head, and female pelvis in2008. The segmentation and 3D reconstruction of these images are now in proceeding. The Digital Korean consists of CT images of about 100 Korean cadavers. These CT images were segmented by individual bone, reconstructed to produce the 3D bone models and the skin surface model was also added. The mechanical properties of individual bones were obtained by measuring the property of individual bone sample. We have distributed these Korean human informations to users in domestic and abroad. About 70 institutes in domestic, and 20 institutes in abroad have used our data in research use and nearly 160 proceedings and articles were published since 2001. We think these human informations have a role of medical information infrastructure that could be used in the field of medical education, biomechanics, virtual reality etc.

Three Dimensional Measurement of Ideal Trajectory of Pedicle Screws of Subaxial Cervical Spine Using the Algorithm Could Be Applied for Robotic Screw Insertion

  • Huh, Jisoon;Hyun, Jae Hwan;Park, Hyeong Geon;Kwak, Ho-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.376-381
    • /
    • 2019
  • Objective : To define optimal method that calculate the safe direction of cervical pedicle screw placement using computed tomography (CT) image based three dimensional (3D) cortical shell model of human cervical spine. Methods : Cortical shell model of cervical spine from C3 to C6 was made after segmentation of in vivo CT image data of 44 volunteers. Three dimensional Cartesian coordinate of all points constituting surface of whole vertebra, bilateral pedicle and posterior wall were acquired. The ideal trajectory of pedicle screw insertion was defined as viewing direction at which the inner area of pedicle become largest when we see through the biconcave tubular pedicle. The ideal trajectory of 352 pedicles (eight pedicles for each of 44 subjects) were calculated using custom made program and were changed from global coordinate to local coordinate according to the three dimensional position of posterior wall of each vertebral body. The transverse and sagittal angle of trajectory were defined as the angle between ideal trajectory line and perpendicular line of posterior wall in the horizontal and sagittal plane. The averages and standard deviations of all measurements were calculated. Results : The average transverse angles were $50.60^{\circ}{\pm}6.22^{\circ}$ at C3, $51.42^{\circ}{\pm}7.44^{\circ}$ at C4, $47.79^{\circ}{\pm}7.61^{\circ}$ at C5, and $41.24^{\circ}{\pm}7.76^{\circ}$ at C6. The transverse angle becomes more steep from C3 to C6. The mean sagittal angles were $9.72^{\circ}{\pm}6.73^{\circ}$ downward at C3, $5.09^{\circ}{\pm}6.39^{\circ}$ downward at C4, $0.08^{\circ}{\pm}6.06^{\circ}$ downward at C5, and $1.67^{\circ}{\pm}6.06^{\circ}$ upward at C6. The sagittal angle changes from caudad to cephalad from C3 to C6. Conclusion : The absolute values of transverse and sagittal angle in our study were not same but the trend of changes were similar to previous studies. Because we know 3D address of all points constituting cortical shell of cervical vertebrae. we can easily reconstruct 3D model and manage it freely using computer program. More creative measurement of morphological characteristics could be carried out than direct inspection of raw bone. Furthermore this concept of measurement could be used for the computing program of automated robotic screw insertion.

Parametric morphing of subject-specific NURBS models for Human Proximal Femurs Subject to Femoral Functions (해부학적 기능을 고려한 환자맞춤형 근위대퇴골 모델의 파라메트릭 변형 방안)

  • Park, Byoung-Keon;Wook, Chae-Jae;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.458-466
    • /
    • 2011
  • The morphology of a bone is closely associated with its biomechanical response. Thus, much research has been focused on analyzing the effects of variation of bone morphology with subject-specific models. Subject-specific models, which are generally achieved from 3D imaging devices like CT and MRI, incorporate more of the detailed information that makes a model unique. Hence, it may predict individual responses more accurately. Despite these powerful characteristics, specific models are not easily parameterized to the extent possible with statistical models because of their morphologic complexities. Thus, it is still proven challenging to analyze morphologic variations of subject-specific models across changes due to aging or disease. The aim of this article is to propose a generic and robust parametric morphing method for a subject-specific bone structure. We demonstrate this by using the proposed method on a model of a human proximal femur. Automatic segmentation algorithms are also presented to parameterize the specific model efficiently. A total of 48 femur models were evaluated for defining morphing vector fields. Also, several anatomical and mechanical functions of femur were considered as morphing constraints, and the NURBS interpolating technique was applied in the method to guarantee the generality of our morphed results.

Improved Motion-Recognizing Remote Controller for Realistic Contents (실감형 컨텐츠를 위한 향상된 동작 인식 리모트 컨트롤러)

  • Park, Gun-Hyuk;Kim, Sang-Ki;Yim, Sung-Hoon;Han, Gab-Jong;Choi, Seung-Moon;Choi, Seung-Jin;Eoh, Hong-Jun;Cho, Sun-Young
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.396-401
    • /
    • 2009
  • This paper describes the improvements made on hardware and software of the remote controller for realistic contents. The controller can provide vibrotactile feedback which uses both of a voice-coil actuator and a vibration motor. A vision tracking system for the 3D position of the controller is optimized with respect to the marker size and the camera parameters. We also present the improvements of motion recognition due to the effective motion segmentation and the fusion of vision and acceleration data. We apply the developed controller to realistic contents and validate its usability.

  • PDF

Analysis of Face Direction and Hand Gestures for Recognition of Human Motion (인간의 행동 인식을 위한 얼굴 방향과 손 동작 해석)

  • Kim, Seong-Eun;Jo, Gang-Hyeon;Jeon, Hui-Seong;Choe, Won-Ho;Park, Gyeong-Seop
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.4
    • /
    • pp.309-318
    • /
    • 2001
  • In this paper, we describe methods that analyze a human gesture. A human interface(HI) system for analyzing gesture extracts the head and hand regions after taking image sequence of and operators continuous behavior using CCD cameras. As gestures are accomplished with operators head and hands motion, we extract the head and hand regions to analyze gestures and calculate geometrical information of extracted skin regions. The analysis of head motion is possible by obtaining the face direction. We assume that head is ellipsoid with 3D coordinates to locate the face features likes eyes, nose and mouth on its surface. If was know the center of feature points, the angle of the center in the ellipsoid is the direction of the face. The hand region obtained from preprocessing is able to include hands as well as arms. For extracting only the hand region from preprocessing, we should find the wrist line to divide the hand and arm regions. After distinguishing the hand region by the wrist line, we model the hand region as an ellipse for the analysis of hand data. Also, the finger part is represented as a long and narrow shape. We extract hand information such as size, position, and shape.

  • PDF

Featured-Based Registration of Terrestrial Laser Scans with Minimum Overlap Using Photogrammetric Data

  • Renaudin, Erwan;Habib, Ayman;Kersting, Ana Paula
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.517-527
    • /
    • 2011
  • Currently, there is a considerable interest in 3D object reconstruction using terrestrial laser scanner (TLS) systems due to their ability to automatically generate a considerable amount of points in a very short time. To fully map an object, multiple scans are captured. The different scans need to be registered with the help of the point cloud in the overlap regions. To guarantee reliable registration, the scans should have large overlap ratio with good geometry for the estimation of the transformation parameters among these scans. The objective of this paper is to propose a registration method that relaxes/eliminates the overlap requirement through the utilization of photogrammetrically reconstructed features. More specifically, a point-based procedure, which utilizes non-conjugate points along corresponding linear features from photogrammetric and TLS data, will be used for the registration. The non-correspondence of the selected points along the linear features is compensated for by artificially modifying their weight matrices. The paper presents experimental results from simulated and real datasets to illustrate the feasibility of the proposed procedure.

Mobile Application based on Image Processing and a Proportion for Food Intake Measuring

  • Kim, Do-Hyeon;Kim, Yoon;Han, Yu-Ri
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.5
    • /
    • pp.57-63
    • /
    • 2017
  • In the paper, we propose a new reliable technique for measuring food intake based on image automatically without user intervention. First, food and bowl image before and after meal is obtained by user. The food and the bowl are divided into each region by the K-means clustering, Otsu algorithm, Morphology, etc. And the volume of food is measured by a proportional expression based on the information of the container such as it's entrance diameter, depth, and bottom diameter. Finally, our method calculates the volume of the consumed food by the difference between before and after meal. The proposed technique has higher accuracy than existing method for measuring food intake automatically. The experiment result shows that the average error rate is up to 7% for three types of containers. Computer simulation results indicate that the proposed algorithm is a convenient and accurate method of measuring the food intake.

Automatic Individual Tooth Region Separation using Accurate Tooth Curve Detection for Orthodontic Treatment Planning

  • Lee, Chan-woo;Chae, Ok-sam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • In this paper, we propose the automatic detection method for individual region separation using panorama image. Finding areas that contain individual teeth is one of the most important tasks in automating 3D models through individual tooth separation. In the conventional method, the maxillary and mandibular teeth regions are separated using a straight line or a specific CT slide, and the tooth regions are separated using a straight line in the vertical direction. In the conventional method, since the teeth are arranged in a curved shape, there is a problem that each tooth region is incorrectly detected in order to generate an accurate tooth region. This is a major obstacle to automating the creation of individual tooth models. In this study, we propose a method to find the correct tooth curve by using the jawbone curve which is very similar to the tooth curve in order to overcome the problem of finding the area containing the existing tooth. We have proposed a new method to accurately set individual tooth regions using the feature that individual teeth are arranged in a direction similar to the normal direction of the tooth alignment curve. In the proposed method, the maxillary and mandibular teeth can be more precisely separated than the conventional method, and the area including the individual teeth can be accurately set. Experiments using real dental CT images demonstrate the superiority of the proposed method.