• Title/Summary/Keyword: 3-D Segmentation

Search Result 454, Processing Time 0.025 seconds

Generation of Triangular Mesh of Coronary Artery Using Mesh Merging (메쉬 병합을 통한 관상동맥의 삼각 표면 메쉬 모델 생성)

  • Jang, Yeonggul;Kim, Dong Hwan;Jeon, Byunghwan;Han, Dongjin;Shim, Hackjoon;Chang, Hyuk-jae
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.419-429
    • /
    • 2016
  • Generating a 3D surface model from coronary artery segmentation helps to not only improve the rendering efficiency but also the diagnostic accuracy by providing physiological informations such as fractional flow reserve using computational fluid dynamics (CFD). This paper proposes a method to generate a triangular surface mesh using vessel structure information acquired with coronary artery segmentation. The marching cube algorithm is a typical method for generating a triangular surface mesh from a segmentation result as bit mask. But it is difficult for methods based on marching cube algorithm to express the lumen of thin, small and winding vessels because the algorithm only works in a three-dimensional (3D) discrete space. The proposed method generates a more accurate triangular surface mesh for each singular vessel using vessel centerlines, normal vectors and lumen diameters estimated during the process of coronary artery segmentation as the input. Then, the meshes that are overlapped due to branching are processed by mesh merging and merged into a coronary mesh.

Tracking Method of Dynamic Smoke based on U-net (U-net기반 동적 연기 탐지 기법)

  • Gwak, Kyung-Min;Rho, Young J.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.81-87
    • /
    • 2021
  • Artificial intelligence technology is developing as it enters the fourth industrial revolution. Active researches are going on; visual-based models using CNNs. U-net is one of the visual-based models. It has shown strong performance for semantic segmentation. Although various U-net studies have been conducted, studies on tracking objects with unclear outlines such as gases and smokes are still insufficient. We conducted a U-net study to tackle this limitation. In this paper, we describe how 3D cameras are used to collect data. The data are organized into learning and test sets. This paper also describes how U-net is applied and how the results is validated.

Activity Segmentation and 3D-Visualization of Pusher-Loaded Earthmoving Operations from Position Data

  • Ahn, Sanghyung;Dunston, Phillip S.;Kandil, Amr;Martinez, Julio C.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.328-332
    • /
    • 2015
  • By logging position data from GPS-equipped construction machines, we re-create daily activities as 3D animations to analyze performance and facilitate look-ahead scheduling. The 3D animation enables going back to any point in time and space to observe the activities as they took place. By segmenting data into a set of activities, it is possible to obtain actual measures of performance such as cycle times, production, speed profiles and idle times. The measures of performance can then be compared to those expected (e.g., theoretical speed profiles vs. observed profiles), and instances of significant difference can be flagged for further investigation. Idle times and queues that exceed prescribed thresholds can also be identified. In general, many of the traditional real-time performance analyses can be performed after the fact. Situations of interest can be identified automatically and the events in this manner enhances effective performance improvement in construction. The proposed research is explained and demonstrated using a real push-loaded earthmoving operation.

  • PDF

Automatic 3D Face Segmentation (3D 얼굴 모델 자동 분할 기술)

  • Lim, Seong-Jae;Hwang, Bon-Woo;Yoon, Seung-Uk;Jun, Hye-Ryeong;Park, Chang-Joon;Choi, Jin-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1448-1450
    • /
    • 2015
  • 본 논문은 3D 스캐너 및 센서 등으로 캡처되어 3D로 복원된 얼굴 객체의 부위별 의미 있는 영역에 대한 분할을 자동으로 수행하는 기술을 제안한다. 3D 스캔된 얼굴 모델을 모델링, 애니메이션, 3D 프린팅 등의 다양한 응용분야에 활용하기 위해서는 스캔된 영역의 의미 있는 부위별 인식이 필수적이다. 본 논문에서는 부위별 의미 있는 영역 레이블링이 된 템플릿 모델을 입력된 3D 복원 모델로 전이하여 복원된 3D 모델의 부위별 의미 있는 영역을 자동으로 분할하고 분할된 영역의 일관성을 유지하는 알고리즘을 제안한다.

Liver Segmentation using Multi-dilated U-Net (다중 확장된 컨볼루션 U-Net 을 사용한 간 영역 분할)

  • Sinha, Shrutika;Oh, Kanghan;Boud, Fatima;Jeong, Hwan-Jeong;Oh, Il-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.1036-1038
    • /
    • 2020
  • This paper proposes a novel automated liver segmentation using Multi-Dilated U-Nets. The proposed multidilation segmentation model has the advantage of considering both local and global shapes of the liver image. We use the CT images subject-wise, every 2D image is concatenated to 3D to calculate the IOU score and DICE score. The experimental results on Jeonbuk National University hospital dataset achieves better performance than the conventional U-Net.

A Robust Object Detection and Tracking Method using RGB-D Model (RGB-D 모델을 이용한 강건한 객체 탐지 및 추적 방법)

  • Park, Seohee;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.61-67
    • /
    • 2017
  • Recently, CCTV has been combined with areas such as big data, artificial intelligence, and image analysis to detect various abnormal behaviors and to detect and analyze the overall situation of objects such as people. Image analysis research for this intelligent video surveillance function is progressing actively. However, CCTV images using 2D information generally have limitations such as object misrecognition due to lack of topological information. This problem can be solved by adding the depth information of the object created by using two cameras to the image. In this paper, we perform background modeling using Mixture of Gaussian technique and detect whether there are moving objects by segmenting the foreground from the modeled background. In order to perform the depth information-based segmentation using the RGB information-based segmentation results, stereo-based depth maps are generated using two cameras. Next, the RGB-based segmented region is set as a domain for extracting depth information, and depth-based segmentation is performed within the domain. In order to detect the center point of a robustly segmented object and to track the direction, the movement of the object is tracked by applying the CAMShift technique, which is the most basic object tracking method. From the experiments, we prove the efficiency of the proposed object detection and tracking method using the RGB-D model.

Feature Extraction of 3-D Object Using Halftoning Image (Halftoning 영상을 이용한 3차원 특징 추출)

  • Kim, D.N.;Kim, S.Y.;Cho, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.465-467
    • /
    • 1992
  • This paper shows 3D vision system based on halftone image analysis. Any halftone image has its own surface vector normal to surface patch. To classily the given 3D images, all the patch on 3D object are transformed to black/white halftone. First we extract the general learning patterns which represents required slopes and their attributes. And next we propose 3D segmentation by searching intensity, slope and density. Artificial neural network is found to be very suitable in this approach, because it has powerful learning quality and noise tolerant. In this study, 3D shape reconstruct using pyramidian model. Our results are evaluated to enhance the quality.

  • PDF

Real-Time Stereoscopic Image Conversion Using Motion Detection and Region Segmentation (움직임 검출과 영역 분할을 이용한 실시간 입체 영상 변환)

  • Kwon Byong-Heon;Seo Burm-suk
    • Journal of Digital Contents Society
    • /
    • v.6 no.3
    • /
    • pp.157-162
    • /
    • 2005
  • In this paper we propose real-time cocersion methods that can convert into stereoscopic image using depth map that is formed by motion detection extracted from 2-D moving image and region segmentation separated from image. Depth map which represents depth information of image and the proposed absolute parallax image are used as the measure of qualitative evaluation. We have compared depth information, parallax processing, and segmentation between objects with different depth for proposed and conventional method. As a result, we have confirmed the proposed method can offer realistic stereoscopic effect regardless of direction and velocity of moving object for a moving image.

  • PDF

Assembly performance evaluation method for prefabricated steel structures using deep learning and k-nearest neighbors

  • Hyuntae Bang;Byeongjun Yu;Haemin Jeon
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.111-121
    • /
    • 2023
  • This study proposes an automated assembly performance evaluation method for prefabricated steel structures (PSSs) using machine learning methods. Assembly component images were segmented using a modified version of the receptive field pyramid. By factorizing channel modulation and the receptive field exploration layers of the convolution pyramid, highly accurate segmentation results were obtained. After completing segmentation, the positions of the bolt holes were calculated using various image processing techniques, such as fuzzy-based edge detection, Hough's line detection, and image perspective transformation. By calculating the distance ratio between bolt holes, the assembly performance of the PSS was estimated using the k-nearest neighbors (kNN) algorithm. The effectiveness of the proposed framework was validated using a 3D PSS printing model and a field test. The results indicated that this approach could recognize assembly components with an intersection over union (IoU) of 95% and evaluate assembly performance with an error of less than 5%.

Grid Pattern Segmentation Using High Pass Filter (고역통과 필터를 이용한 그리드 패턴 영역분할)

  • Joo, Ki-See
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.1
    • /
    • pp.59-63
    • /
    • 2007
  • In this paper, an image segmentation algorithm is described to extract both the contour line and the inner grid patterns of body in case of ambiguous environment. The binary method using a threshold is used to extract image boundary. To reduce image noise, the $3{\times}3$ hybrid high pass filter adjusted for applying 3D information extraction of complicated shape object is proposed. This hybrid high pass filter algorithm can be applied to extract complicated shape object such as 3D body shape, CAD system, and factory automation since the processing time for image denoising is shorter than the conventional methods.

  • PDF