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Activity Segmentation and 3D-Visualization of Pusher-
Loaded Earthmoving Operations from Position Data
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Abstract: By logging position data from GPS-equipped construction machines, we re-create daily activities as 3D animations to
analyze performance and facilitate look-ahead scheduling. The 3D animation enables going back to any point in time and space to
observe the activities as they took place. By segmenting data into a set of activities, it is possible to obtain actual measures of
performance such as cycle times, production, speed profiles and idle times. The measures of performance can then be compared to
those expected (e.g., theoretical speed profiles vs. observed profiles), and instances of significant difference can be flagged for further
investigation. Idle times and queues that exceed prescribed thresholds can also be identified. In general, many of the traditional real-
time performance analyses can be performed after the fact. Situations of interest can be identified automatically and the events in this
manner enhances effective performance improvement in construction. The proposed research is explained and demonstrated using a

real push-loaded earthmoving operation.
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1. INTRODUCTION

Discrete-event simulation can represent the operation
of a dynamic and uncertain process, such as construction
operations, as a chronological sequence of events in a
computer model. Experiments with a simulation model
allow users to better understand system behavior, evaluate
impacts of various constraints and factors, identify
bottlenecks, allocate resource, manage risks, and
ultimately improve system performance. Simulation
applications can be found in planning and optimizing
various types of construction operation, such as high-risk
building, earthmoving, tunneling, sewer-line construction,
and paving operations [1,2].

However, simulation has been primarily used for
long-term planning (e.g., master scheduling or optimizing
site layout) during pre-construction stage, where a
simulation model is designed to predict long-term, steady
state system behavior. The modeling process usually
assumes that the target system is stationary and that
models will operate under a given set of system design
parameters, for example activity precedence relationships
and duration distributions [3]. In contract, the goal of
look-ahead scheduling is no longer to average out the
randomness in the system’s behavior but rather to account
for and react to system changes on a real-time or near-
real-time basis. It requires that a simulation model must
be able to capture site condition changes constantly and be
updated accordingly so that the changes and their impacts
can be evaluated in a timely manner [4]. This also
presents several unique challenges when applying
simulation as a look-ahead scheduling tool. First, data

regarding the most recent project performance are the
basis for look-ahead scheduling, yet the time and cost
required to manually collect and analyze these data within
a short period of time can be prohibitive. Second, since
rescheduling is necessary whenever there is a significant
change in project status or future outlook, such frequent
manual updating can be daunting task in the light of
inevitable and constant changes in the project
environment along the project timeline. These frequent
manual data collection and model updating procedures
will inevitably make traditional simulation studies
expensive and cumbersome for industry use [4].

Therefore, to make simulation useful for look-ahead
scheduling, the current set of simulation modeling
methods, such as STROBOSCOPE [5], must be enhanced
to a more automated and low-maintenance modeling
process. Song and Eldin [4] address that real-time
tracking of operation data is the catalyst necessary to
transform the current simulation modeling process for
look-ahead scheduling. With the recent advancement of
tracking sensors (e.g., location, motion, and image
sensors), a large set of data can be captured and streamed
off construction sites for remote and automated data
processing and analysis. These data contain the most
current performance data that can be analyzed for
operational changes and uncertainties for look-ahead
scheduling. This information can also be used to drive a
real-time and more automated model updating process,
which can significantly reduce engineers’ burden in
maintaining a simulation model.

Moreover, the collected data can be used to visualize
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operations in 3D space as animation. It is necessary to
depict the movement, transformations, and interactions
between these visualization elements to analyze
operations. To depict smooth motion, visual elements
must be shown at the right position and orientation several
times per second. Many sensors, such as Global
Positioning System (GPS), are capable of recording and
transmitting data with a frequency of a few minutes of
even seconds for accurate visualization of operations.

Thus, this research proposes an adaptive real-time
sensor-based analysis and 3D visualization-simulation
framework for earthmoving construction applications for
the purpose of look-ahead of scheduling. This paper
describes this new analysis framework and demonstrates
its feasibility through a prototype system.

II. RESEARCH BACKGROUND

The limitation of current simulation approaches and
the need for a real-time simulation environment have been
documented in several publications [3]. The construction
industry has recognized the opportunity for real-time
project monitoring and control using the voluminous data
streaming off job sites that are made available because of
new sensing and communication technologies [6].
However, there is very limited work in integrating real
time data collection and simulation for more efficient
look-ahead scheduling in the field. For progress
monitoring and measuring project, algorithms were
developed to utilize real-time project data for measuring
project progress, productivity, and actual consumption of
materials [7]. The applications of real-time simulation
concepts in construction are rather more limited. Chung,
Mohamed, and AbouRizk [2] collected project data from a
tunneling project manually on a biweekly basis and used
the data to improve simulation input models using
Bayesian updating techniques. Their study showed that
repetitive long-term projects provide opportunities to fine-
tune simulation input parameters based on actual project
progress. Lu [8] developed a real-time decision-support
system for planning concrete plant operations. This
system tracks activity durations in real time and later uses
the data to update simulation input models.

In summary, the prior studies focused primarily on
leveraging real-time data for modeling activity durations.
Application of real-time data also brings new
opportunities to transform other components of simulation
modeling, such as input modeling, model validation and
updating. In addition, since simulation-based look-ahead
scheduling as a relatively new research area, there is a
need to define a systematic approach to transform and
integrate various modeling components. The following
section defines system components of the proposed
adaptive sensor-based analysis and 3D visualization-
simulation framework and explains at the conceptual level
how it can transform the existing simulation process for
look-ahead scheduling.

III. FRAMEWORK FOR SENSOR-BASED ANALYSIS AND 3D
VISUALIZATION-SIMULATION
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The proposed adaptive real-time 3D visualization-
simulation framework contains four components,
including  real-time  data  acquisition,  process
knowledgebase, adaptive modeling, and discrete-event
simulation services. These system components integrate
real-time data and process knowledge to facilitate constant
model updating and refinement to reflect changes in the
construction field for look-ahead scheduling.

A. Real-Time Data Acquisition

Real-time simulation is a data-driven modeling
process. To accurately represent and forecast the system
performance, a significant amount of data is required for
determining current project status and fine-tuning the
model’s operation logic structure (e.g., activity definition
and sequence) and input models (e.g., activity duration
distributions). The proposed data-collection component
constantly collects data that can adequately describe
current project status and the future outlook of the field
operations, such as productivity performance, current
project progress, and resource allocation for the near
future. These data can be collected from various sources,
such as data-collection sensors, information systems and
databases, as well as project personnel.

Operation and planning data must be collected
constantly to reflect the changes in project performance in
the job site environment. However, collecting data in real
time can be challenging. The time and cost required to
manually collect and process these data are prohibitive.
Nevertheless, with the recent advent of sensing and
communication technology along with already widely
used information systems and database applications, the
lack of real-time data is becoming less and less of a factor
in the development and implementation of real-time
simulation.

A broad range of embedded, wide-area, and satellite-
based sensors (e.g., speed, location, motion, and image
sensors) are economically available for wireless,
automatic, or remote data gathering. For example,
equipment-intensive heavy construction projects have
been leveraging the Global Positioning System (GPS) to
track the real-time locations of construction equipment
such as earth-moving machines [7,9] and concrete-hauling
trucks. GPS is also used in the prototype system for this
research.

B.  Process Knowledgebase

Once data are collected and made available from a
highly sensed construction site, the next logical step is to
analyze and interpret the time-sequenced data for
simulation modeling. Many sensors, such as GPS, are
capable of recording and transmitting data with a
frequency of a few minutes or even seconds. This high-
frequency data collection process not only improves data
accuracy but also generates a significant amount of data
that challenge the ways in which meaningful information
can be extracted in a timely fashion. While complete
automation of this information extraction process is not
realistic, there is an opportunity to streamline and semi-
automate the process by incorporating domain knowledge
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of real-world operation, such as activity sequencing and
input modeling, into the real-time simulation framework,
so direct user involvement can be minimized.

C. Adaptive Modeling

To call something adaptive is to say it has the ability
to become more suitable or fit for a specific use or
situation. The key feature of the proposed real-time
simulation is its capability to adapt a pre-defined
simulation model to constant changes of the project
environment. This adaptive modeling capability is
achieved by updating both the model operation logic and
the input models when they are no longer able to
accurately represent current and anticipated future project
performance. Our prototype system does not address this
component yet, but such a capacity is envisioned.

D. Simulation Services

Simulation services required by real-time simulation
include model verification, validation, simulation
execution, and output data collection. Many simulation
software tools available offer simulation functions such as
graphical modeling, simulation algorithms, and output
data analysis, and they allow end users to construct
models and conduct simulation experiments to verify and
validate the simulation model. This checking process is
normally conducted with intensive user intervention. The
proposed real-time 3D animation-simulation system
provides support for verifying and validating a simulation
model through the efficient means of 3D animation.

IV. ACTIVITY SEGMENTATION

The prototype system uses GPS (5Hz) tracking which
can record equipment’s location, speed, direction, and
time stamp. However, the states of equipment are hidden
behind the collected observation data. The proposed
framework uses Hidden Markov Model (HMM) to extract
activity information from GPS observation data. HMM
consists of two simultaneous stochastic processes. The
first underlying stochastic process constitutes a Markov
chain, but unlike with ordinary Markov models, the states
cannot be observed. The second stochastic process
produces a sequences of observations. Each state has a
probability distribution for the observations to appear.
Thus, based on the sequence of observations the most
probable respective state sequence can be deduced. Due to
the stochastic and dualistic nature of HMMs, they are very
often used in modeling human actions and performance.

A. Hidden Markov Models

An HMM with one dimensional discrete observation
probability distributions can be defined as follow. A
Hidden Markov Model A consists of the following
elements [10].
1) A set of possible hidden states, S =
{8,,S,, ..., Sy }. The state at time t is denoted as
q; and the state sequence within 1 <t <T as
Q =1{q1, 92 -, qr}-

2) Observation symbols v, , where 1<k < M.
Observation at t is denoted as o, and the
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observation sequence within 1<t<T as
0= {01, 0y, ...,OT}.
3) State  transition  probabilities A = {ai j},

representing the probability of transition from
state S; to S;, where a;; = P(th = Sjlq; =
S),1<i,j<N.

4) Observation probabilities B = {bj(k)},
representing the probability of observation
symbol v, in state S;, where bj(k) = P(o, =
vlqge=S)and1<j<N,1<k<M.

5) The prior probabilities of states © = {m;}, where
m;,=P(q, =S5;),1<i<N.

For convenience of A HMM is usually presented

A= (4,B,m).

B. Viterbi-algorithm

The Viterbi-algorithm [11] is a dynamic
programming algorithm for decoding the most likely
sequence of hidden states given a sequence of observed
events. To be able to find the best matching sequence, an
incremental quantity V,(i) has to be defined (for
states 1 < i < N):

Ve (D) = Vi(Ve(Da;j)bj(k), 0per = v (1)

The Viterbi algorithm has four steps, initialization,
recursion, termination and backtracking of state sequence.
At initialization, the values of the quantity V;(j) and the
state sequence back tracking array ¢ are initialized (for
states 1 < j < N):

Vi) = bj(l)mj, o1 =vi; 9:() =0 (2

Then the values are updated recursively using the
sequence of observations 0,, ..., 07, and maximizing the
probability of the possible state transitions (from state
1<i< Ntostate I<j < N).

Ve () = Vicien(Veer (Day j)bj(k), oo = v (3)
:(j) = arg VisisN(Vt—l(i)ai,j) (4)

V. THE PROTOTYPE SYSTEM

Earthwork operations involve the excavation,
transportation and placement or disposal of materials.
Successful execution and control of these projects rely on
an efficient look-ahead scheduling approach that can
capture dynamic project data and incorporate them into
the scheduling of upcoming work. The proposed
framework was implemented to earthwork operations with
three push-loaded tractor scrapers and one pusher as a
case study.

A.  Push-loaded Earthmoving Operations

Tractor-pulled scrapers are designed to load, haul,
and dump loose material. The greatest advantage of
tractor-scraper combinations is their versatility. The key
to a pusher-scraper spread’s economy is that both the
pusher and the scraper share in the work of obtaining the
load. To the extent that they can self-load, they are not
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dependent on other equipment. If one machine in the
spread experiences a temporary breakdown, it will not
shut down the job, as would be the case for a machine that
is used exclusively for loading. If the loader breaks down,
the entire job must stop until repairs can be made. For off-
highway situations having hauls of less than a mile, a
scraper’s ability to both load and haul gives it an
advantage. Additionally, the ability of these machines to
deposit their loads in layers of uniform thickness
facilitates compaction operations.

B.  Prototype System Implementation

The prototype system integrates GPS tracking
technology with simulation for the purpose of look-ahead
scheduling. The pusher-loaded earthmoving operations
are associated with the location, speed, or travel direction
of a piece of equipment. GPS uses satellites that transmit
precise signals to allow a GPS receiver installed in a
vehicle to determine its location, speed, travel direction,
and the time.

To extract meaningful data for simulation
modeling—e,g., scraper loading time and hauling time—
3D animation technique is used to assist data integration.
The collected GPS data can be reviewed by project
personnel to prepare training data for activity
segmentation. The user interface of a 3D data review tool
in Figure 1 (a) shows all the data points captured.
Additionally, users can re-create operations in 3D
animation to identify hidden states of operations for the
training data set (Figure I (b); (c)). The list of hidden
states is prepared with a STROBOSCOPE activity cycle
diagram in Figure II. A set of hidden states is {Load (S1),
Haul-Dump-Return-1 (S2), Stop (S3), Haul-Dump-
Return-2 (S4), WaitToLoad & WaitToEnter (S5), and
EnterToLoad (S6)}. Haul, dump, and return activities are
considered as one single state to simplify the activity
segmentation process. By replaying the first cycle of the
scrapers in 3D animation, users can manually identify the
state of each data point. The prototype system classifies
the collected observation data following the rule in Table
I. Then, the set of {hidden state #, observation #}
generated from the first cycle of scrapers is prepared to
use as training data for HMM to extract activity
information. Figure III shows an example activity
segmentation result from cycle #1 to cycle #5 of scraper
#1. The sequence of observations graph plots the prepared
observations data based upon Table I. Another stair plot at
the bottom of Figure III validates the feasibility of
proposed framework to identify the activity information.
The sequences of hidden states graph in Figure III shows
that there is no error between cycle #1 and cycle #5. In
cycle #5, there are some discrepancies between the actual
and calculated hidden states. Some of the actual state #2
data points, Haul-Dump-Return-1, are identified as state
#4, Haul-Dump-Return-2, which is not significant. Both
state #2 and state #4 can be considered as one single
activity when there is no stop point between two
activities, which is the case in cycle #5.
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FIGURE I. (a) GPS observation data review tool; (b) re-creation of
operations in 3D animation with breadcrumbs; (c) & (d) re-creation of
operations in 3D animation without breadcrumb; (e) time synced
recording of the same operation

1s2]
HaulDmpRet_1

| Haul-Dump Return-1
1 Stop
Haul-Dump-Return-2
WaitToload & WaitToEnter
[ EnterToload

FIGURE II. STROBOSCOPE activity cycle diagram and hidden states
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FIGURE III. Observation sequence produced by the prototype and the
most likely sequence of hidden states decoded using Viterbi-algorithm

V. CONCLUSION

Real-time simulation challenges the way in which a
simulation study is conducted, but at the same time, real-
time data give rise to the potential of having a more
streamlined and efficient modeling and experiment
process for short-term scheduling. As shown in the
proposed framework, real-time data inspire the possible
automation of the data collection, model updating,
verification, and validation processes. When fully
implemented, these automated processes can help users
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focus on the essentials of project scheduling and control
instead of on the requirements for the simulation
modeling itself. Users can be freed from time-consuming
data-collection activities and can direct their efforts
toward building process knowledge.
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TABLE 1. GPS observation data classification for HMM

: Observation #
Scraper Speed Distance Pusher Speed ® e
: . ; 0sSpeed<1 1
Distance betw een(Scra,per & Pusher 1 <Speed <2 . 2
s Length + Pusher Length 1
FEsae (Scraper Length + Pusher Length) | max(Py 1< Speesd <max(®)|_max(®)+1
N . 0<Speed<1 max(P)+2
Distance between S & Push
sl SRR [ temees | meys
s Length + Pusher Length : :
(Scraper Length + Pusher Leng®®) [Py 1 sSpesd <am(P)
; 0<Speed<1
Distance between S & Push M—
15 ce E&ﬂ{ Craper er 1<S <2
1<Speed<2 s Shes Long) max(P)-1 < Speed < max(P)
Distance between Scraper & Pusher 0=8p =1 _ —
= 1 <Speed<2 i
Scraper Length + Pusher Length) |- -
(Scraper Leng er Length) max(P)-1 < Speed < max(P)
. 0<Speed<1
Distance betw S & Push e =
15 ce een{ craper sher 1< Speed <2 .......
(Scraper Length + Pusher Length) |————— i S————— _:
max(S)-1 < Speed < max(s) manPLleSpeed P
Distance between Scraper & Pusher < Speed —_—
E 1<Speed<2 H )
s Length + Pusher Length) | —— ———————f -
Glanpeckow he g max(P)-1 < Speed < max(P) M

*Note: max(P) = (integer)maximum pusher speed
max(S) = (integer)maximum scraper speed

number of discrete observations =M (1 =k <M)



