• Title/Summary/Keyword: 3-Axis Sensor

Search Result 395, Processing Time 0.033 seconds

A Study on Management Functions of Intelligent Reflectors Environment (지능형 반사경의 관리 기능 연구)

  • Kang-Hyun Nam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.433-440
    • /
    • 2023
  • When the reflector is hit by a vehicle or returned by a storm, an event is generated by the impact sensor and a trigger is operated. The trigger processing algorithm of this paper compares the X, Y, and Z values of the gyro sensor with the registered values and proposes to drive them to the original values by the operation of the 3-axis driving motor. And by recognizing the vehicle license plate, if the vehicle is stolen or a social problem, information is provided to the police operation network. When the reflector is stolen or moved, it has a registered GPS value, so it operates the theft monitoring function to process it.

Precise attitude determination strategy for spacecraft based on information fusion of attitude sensors: Gyros/GPS/Star-sensor

  • Mao, Xinyuan;Du, Xiaojing;Fang, Hui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • The rigorous requirements of modern spacecraft missions necessitate a precise attitude determination strategy. This paper mainly researches that, based on three space-borne attitude sensors: 3-axis rate gyros, 3-antenna GPS receiver and star-sensor. To obtain global attitude estimation after an information fusion process, a feedback-involved Federated Kalman Filter (FKF), consisting of two subsystem Kalman filters (Gyros/GPS and Gyros/Star-sensor), is established. In these filters, the state equation is implemented according to the spacecraft's kinematic attitude model, while the residual error models of GPS and star-sensor observed attitude are utilized, to establish two observation equations, respectively. Taking the sensors' different update rates into account, these two subsystem filters are conducted under a variable step size state prediction method. To improve the fault tolerant capacity of the attitude determination system, this paper designs malfunction warning factors, based on the principle of ${\chi}^2$ residual verification. Mathematical simulation indicates that the information fusion strategy overwhelms the disadvantages of each sensor, acquiring global attitude estimation with precision at a 2-arcsecs level. Although a subsystem encounters malfunction, FKF still reaches precise and stable accuracy. In this process, malfunction warning factors advice malfunctions correctly and effectively.

Auto Path Generation and Active Compliance Force Control Using 3-axis Grinding Robot (3축 그라인딩 로봇을 이용한 자동 경로 생성 및 능동 컴플라이언스 힘 제어)

  • Choo, Jung-Hoon;Kim, Soo-Ho;Lee, Sang-Bum;Kim, Jung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1088-1094
    • /
    • 2006
  • In this paper, an auto path generation and an active compliance grinding control using 3-axis farce sensor are presented. These control algorithms enable the grinding robot to follow unknown path of various workpiece shape pattern. The robot is able to go grinding along unknown paths by position controller managing tangential direction angle and cutting speed, with only information about the start position and the end position. Magnitude and direction of normal force are calculated using force data that go through low pass filter. Moreover, normal and tangential directions are separated for force control and velocity control, respectively.

Design and Implementation of Interactive-typed Bluetooth Device interact with Android Platform-based Contents Character (안드로이드 플랫폼 기반의 콘텐츠 캐릭터와 연동되는 체감형 블루투스 기기의 설계 및 구현)

  • Park, Byoung-Seob;Choi, Hyo-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.127-135
    • /
    • 2014
  • Interactive-typed devices and contents that have been often applied in the field of entertainment and game are the technology that allows you to maximize the enjoyment and participation of users through the interaction of each. In this paper, we designed an interactive-typed smartphone app that is based on the Android platform, implemented the wearable Bluetooth device to control via a interactive interface with a vibration sensor and three-axis acceleration sensor. We tested the functionality and 3-axis motion's operability by using smartphone app, interface interactive-typed device that has been developed, prove useful as a wearable Bluetooth device that has the convenience of the user. Further, it is shown that by implementing the optimized protocol of the sensor data transfer over Bluetooth, it is possible to reduce the malfunction of the content of the smart phone.

Measurements Coastal landfill Using Automatic VRS-GPS Surveying (VRS-GPS 자동측위시스템을 이용한 해안매립지 측량)

  • Nam, Kwang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5215-5220
    • /
    • 2013
  • Recent construction in the field of 3D aversion is increasing interest in automation. This study is results about survey of the coastal landfill using automatic VRS-GPS surveying system. GPS is made with GRXI and SHC250 controller. Automatic surveying system is composed of DPS module, geomagnetism sensor, bluetooth, gimbals, IMU, etc and enables an automatic driving via entered into a route of position. The developed auto surveying system has installed the front and camera for vertical axis and can grasp situation of surveying with smartphone in real time. The comparative result between surveyed result with repetition method auto VRS-GPS surveying system observed surveyed result with VRS-RTK has shown that average error of x-axis is 0.009m, average error of y-axis, 0.010m and average error of height, 0.002m. This possibility was confirmed that field application.

Image Deblurring Using Vibration Information From 3-axis Accelerometer (3축 가속도 센서의 흔들림 정보를 이용한 영상의 Deblurring)

  • Park, Sang-Yong;Park, Eun-Soo;Kim, Hak-Il
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.3
    • /
    • pp.1-11
    • /
    • 2008
  • This paper proposes a real-time method using a 3-axis accelerometer to enhance blurred images taken from a camera loaded in mobile devices. Blurring phenomenon is a smoothing effect occurring in photo images. Algorithms to cope with blurring phenomenon is essential since small-size mobile devices tremble severely by even a tiny hand-shaking of a user. In this paper, accurate sensing characteristics of the 3-axis accelerometer is acquired by applying the sensor in pendulum motion and the blurring phenomenon is modeled as a uniform distribution and Gaussian distribution. Also, non-Gaussian distributed model is observed in the experiment of real blurring phenomenon and a particular deblurring function is designed by reversing the model. It has been demonstrated that the application of trembling information to the deblurring function adequately removes the blurring phenomenon.

The Study of Realtime Fall Detection System with Accelerometer and Tilt Sensor (가속도센서와 기울기센서를 이용한 실시간 낙상 감지 시스템에 관한 연구)

  • Kim, Seong-Hyun;Park, Jin;Kim, Dong-Wook;Kim, Nam-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1330-1338
    • /
    • 2011
  • Social activities of the elderly have been increasing as our society progresses toward an aging society. As their activities increase, so does the occurrence of falls that could lead to fractures. Falls are serious health hazards to the elderly. Therefore, development of a device that can detect fall accidents and prevent fracture is essential. In this study, we developed a portable fall detection system for the fracture prevention system of the elderly. The device is intended to detect a fall and activate a second device such as an air bag deployment system that can prevent fracture. The fall detection device contains a 3-axis acceleration sensor and two 2-axis tilt sensors. We measured acceleration and tilt angle of body during fall and activities of daily(ADL) living using the fall detection device that is attached on the subjects'. Moving mattress which is actuated by a pneumatic system was used in fall experiments and it could provide forced falls. Sensor data during fall and ADL were sent to computer and filtered with low-pass filter. The developed fall detection device was successful in detecting a fall about 0.1 second before a severe impact to occur and detecting the direction of the fall to provide enough time and information for the fracture preventive device to be activated. The fall detection device was also able to differentiate fall from ADL such as walking, sitting down, standing up, lying down, and running.

Initial Pole Position Estimation Algorithm of a Z-Axis PMLSM (Z축 선형 영구자석 동기전동기의 초기 자극위치 추정 알고리즘)

  • Lee, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.41-45
    • /
    • 2008
  • This paper deals with the estimation method on the initial pole position of a z-axis permanent magnet linear synchronous motor(PMLSM) without magnetic pole sensors such as Hall sensors. The proposed method takes account of the gravitational force at z-axis and also the load conditions. The algorithm consists of two steps. The first step is to approximately estimate the initial q-axis by monitoring the movements due to the test current at predefined different test q-axes. The second step is to estimate the real q-axis as accurately as possible by using the outputs corresponding to torques due to the test current at three different test q-axes in order to avoid the effect of load mass variations. Experimental results on the z-axis PMLSM show good estimation characteristics of the proposed method irrespective of load mass conditions.

Development of 3-Dimensional Sensor Nodes using Electro-magnetic Waves for Underwater Localization (수중 위치 추정을 위한 3차원 전자기파 센서 노드 개발)

  • Kwak, Kyung Min;Kim, Jinhyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • In this paper, we discuss a 3-dimensional localization sensor node using EM waves (Electromagnetic waves) with RSSI (Received Signal Strength Indicator). Generally EM waves cannot be used in underwater environment, because the signal is highly attenuated by the water medium according to the distance. Although the signal quickly reduces in underwater, the reducing tendency is very clear and uniform. Hence EM waves have possibility as underwater distance sensors. The authors have verified the possibility by theory and several experiments, and developed calibration methods in case of linear and planer environment. For 3-dimensional localization in underwater, it must be known antenna's radiation pattern property in electric plane(called E-plane). In this paper, we proceed experiments to verify attenuation tendency with z axis movement, PLF (Polarization Loss Factor) and ILF (Inclination Loss Factor) with its theoretical approach.

The Study of Gait Analysis for Hemiplegic Patient Using 3-axis Acceleration Signal (3축 가속도 신호를 이용한 편마비 환자의 보행 분석에 대한 연구)

  • Lee, Hyo-Ki;Lee, Kyoung-Joung;Seo, Ji-Hyun;Park, Si-Woon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.869-870
    • /
    • 2006
  • In this study, we proposed an algorithm which can detect the walking event in hemiplegic patient using three axis acceleration signal. Twenty hemiplegic patients were participated in an experiment on a level corridor. To evaluate the accuracy, we compared the time difference between the detected event and signal from FSR-Sensor. Consequently, the mean difference of 46.1ms was obtained and it suggests that the proposed method is effective to detect the walking event in hemiplegic patient. In future, these results could be used to evaluate the walking ability in hemiplegic patient in clinical practice.

  • PDF