• Title/Summary/Keyword: 3 V Single Power Supply

Search Result 151, Processing Time 0.023 seconds

Design of a 12 Bit CMOS Current Cell Matrix D/A Converter (12비트 CMOS 전류 셀 매트릭스 D/A 변환기 설계)

  • Ryu, Ki-Hong;Yoon, Kwang-Sub
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.8
    • /
    • pp.10-21
    • /
    • 1999
  • This paper describes a 12bit CMOS current cell matrix D/A converter which shows a conversion rate of 65MHz and a power supply of 3.3V. Designed D/A converter utilizes current cell matrix structure with good monotonicity characteristic and fast settling time, and it is implemented by using the tree structure bias circuit, the symmetrical routing method with ground line and the cascode current switch to reduce the errors of the conventional D/A converter caused by a threshold voltage mismatch of current cells and a voltage drop of the ground line. The designed D/A converter was implemented with a $0.6{\mu}m$ CMOS n-well technology. The measured data shows a settling time of 20ns, a conversion rate of 50 MHz and a power dissipation of 35.6mW with a single power supply of 3.3V. The experimental SNR, DNL, and INL of the D/A converter is measured to be 55dB, ${\pm}0.5LSB$, and ${\pm}2LSB$, respectively.

  • PDF

Design of a CMOS D/A Converter for advanced wireless transceiver of high speed and high resolution (고속 고해상도의 무선통신 송 $\cdot$ 수신기용 CMOS D/A 변환기 설계)

  • Cho Hyun-Ho;Park Cheong-Yong;Yune Gun-Shik;Ha Sung-Min;Yoon Kwang-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.549-552
    • /
    • 2004
  • The thesis describes the design of 12bit digital-to-analog converter (DAC) which shows the conversion rate of 500MHz and the power supply of 3.3V with 0.35${\mu}m$ CMOS 1-poly 4-metal process for advanced wireless transceiver of high speed and high resolution. The proposed DAC employes segmented structure which consists of 6bit MSB, 3bit mSB, 3bit LSB for area efficiency Also, using a optimized aspect ratio of process and new triple diagonal symmetric centroid sequence for high yield and high linearity. The proposed 12bit current mode DAC was employs new deglitch circuit for the decrement of the glitch energy. Simulation results show the conversion rate of 500MHz, and the power dissipation of 85mW at single 3.3V supply voltage. Both DNL and INL are found to be smaller than ${\pm}0.65LSB/{\pm}0.8LSB$.

  • PDF

CMOS Transimpedance Amplifiers for Gigabit Ethernet Applications (기가비트 이더넷용 CMOS 전치증폭기 설계)

  • Park Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.16-22
    • /
    • 2006
  • Gigabit transimpedance amplifiers are realihzed in submicron CMOS technologies for Gigabit Ethernet applications. The regulated cascode technique is exploited to enhance the bandwidth and noise performance simultaneously so that it can isolate the large input parasitic capacitance including photodiode capacitance from the determination of the bandwidth. The 1.25Gb/s TIA implemented in a 0.6um CMOS technology shows the measured results of 58dBohm transimpedance gain, 950MHz bandwidth for a 0.5pF photodiode capacitance, 6.3pA/sqrt(Hz) average noise current spectral density, and 85mW power dissipation from a single 5V supply. In addition, a 10Gb/s TIA is realized in a 0.18um CMOS incorporating the RGC input and the inductive peaking techniques. It provides 59.4dBohm transimpedance gain, 8GHz bandwidth for a 0.25pF photodiode capacitance, 20pA/sqrt(Hz) noise current spectral density, and 14mW power consumption for a single 1.8V supply.

Design of an 8-bit 100KSPS Cyclic Type CMOS A/D Converter with 1mW Power Consumption (1mW의 전력소모를 갖는 8-bit 100KSPS Cyclic 구조의 CMOS A/D 변환기)

  • Lee, Jung-Eun;Song, Min-Kyu
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.9
    • /
    • pp.13-19
    • /
    • 1999
  • This paper describes a design of an 8-bit 100KSPS 1mW CMOS A/D Converter. Using a novel systematic offset cancellation technique, we reduce the systematic offset voltage of operational amplifiers. Further, a new Gain amplifier is proposed. The proposed A/D Converter is fabricated with a $0.6{\mu}m$ single-poly triple-metal n-well CMOS technology. INL and DNL is within ${\pm}1LSB$, and SNR is about 43dB at the sampling frequency of 100KHz. The power consumption is $980{\mu}W$ at +3V power supply.

  • PDF

A High Efficiency Single-Stage PFC Flyback Converter for PDP Sustaining Power Module (PDP 유지 전원단을 위한 고효율 Single-stage PFC Flyback Converter)

  • Yoo, Kwang-Min;Lim, Sung-Kyoo;Lee, Jun-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.3 s.16
    • /
    • pp.11-16
    • /
    • 2006
  • A low cost PDP sustain power supply is proposed based on flyback topology. By using Boundary Conduction Method(BCM) to control input current regulation, DCM condition can be met under all load conditions. Another feature of the proposed method is that a excessive voltage stress due to the link voltage increase can be suppressed by removing link capacitor and suggest new 'Level-shifting switch driver'. this new gate driver is improved 66% of efficiency than switching loss of a existed push-pull amplifier. The proposed converter is tested with a 400W(200V-2A output) prototype circuit.

  • PDF

Design of a CMOS Image Sensor Based on a 10-bit Two-Step Single-Slope ADC

  • Hwang, Yeonseong;Song, Minkyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.246-251
    • /
    • 2014
  • In this paper, a high-speed CMOS Image Sensor (CIS) based on a 10-bit two step Single Slope A/D Converter (SS-ADC) is proposed. The A/D converter is composed of both 5-bit coarse ADC and a 6-bit fine ADC, and the conversion speed is 10 times faster than that of the single-slope A/D convertor. In order to reduce the pixel noise, further, a Hybrid Correlated Double Sampling (H-CDS) is also discussed. The proposed A/D converter has been fabricated with 0.13um 1-poly 4-metal CIS process, and it has a QVGA ($320{\times}240$) resolution. The fabricated chip size is $5mm{\times}3mm$, and the power consumption is about 35 mW at 3.3 V supply voltage. The measured conversion speed is 10 us, and the frame rate is 220 frames/s.

Process Development of a Standard Operating Procedure (SOP) for the Manufacturing of Standardized Distribution Boards (규격화된 분전반 제작을 위한 표준작업절차(SOP)의 공정 개발)

  • Ko, Wan-Su;Lee, Byung-Seol;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.21-27
    • /
    • 2018
  • The purpose of this study is to develop a SOP (Standard Operating Procedure) for a distribution board that can monitor the leakage current of a load distribution line in real time. The developed distribution board was fabricated by applying IEC 61439-1. It consists of the distribution board and an alarm device. The work process for making the distribution board was compliant with the KEMC (Korea Electrical Manufacturers Cooperative) regulations. And the AC distribution board range is 1,000 V. In addition, the voltage in DC is less than 1500 V. The distribution board receives a 3-phases and 4-wires power supply system and can supply power to the load of a maximum of 32 single or three phase distribution circuits. Also, leakage current measured on the power distribution board was used by sensors installed. The SOP of the developed distribution board consists of the installation standards for the short circuit alarm device and sensor, the surge protection device, switches and indication lamps, and other devices. The operation procedure was prepared so that each manufacturing step of the distribution board must be confirmed by the persons in charge of preparation, production, quality control and approval before moving forward to the next step.

A Low Noise and Low Power RF Front-End for 5.8-GHz DSRC Receiver in 0.13 ㎛ CMOS

  • Choi, Jae-Yi;Seo, Shin-Hyouk;Moon, Hyun-Won;Nam, Il-Ku
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.1
    • /
    • pp.59-64
    • /
    • 2011
  • A low noise and low power RF front-end for 5.8 GHz DSRC (Dedicated Short Range Communication) receiver is presented. The RF front-end is composed of a single-to-differential two-stage LNA and a Gilbert down-conversion mixer. In order to remove an external balun and 5.8 GHz LC load tuning circuit, a single-to-differential LNA with capacitive cross coupled pair is proposed. The RF front-end is fabricated in a 0.13 ${\mu}m$ CMOS process and draws 7.3 mA from a 1.2 V supply voltage. It shows a voltage gain of 40 dB and a noise figure (NF) lower than 4.5 dB over the entire DSRC band.

The Write Characteristics of SONOS NOR-Type Flash Memory with Common Source Line (공통 소스라인을 갖는 SONOS NOR 플래시 메모리의 쓰기 특성)

  • An, Ho-Myoung;Han, Tae-Hyeon;Kim, Joo-Yeon;Kim, Byung-Cheul;Kim, Tae-Geun;Seo, Kwang-Yell
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.35-38
    • /
    • 2002
  • In this paper, the characteristics of channel hot electron (CHE) injection for the write operation in a NOR-type SONOS flash memory with common source line were investigated. The thicknesses of he tunnel oxide, the memory nitride, and the blocking oxide layers for the gate insulator of the fabricated SONOS devices were $34{\AA}$, $73{\AA}$, and $34{\AA}$, respectively. The SONOS devices compared to floating gate devices have many advantages, which are a simpler cell structure, compatibility with conventional logic CMOS process and a superior scalability. For these reasons, the introduction of SONOS device has stimulated. In the conventional SONOS devices, Modified Folwer-Nordheim (MFN) tunneling and CHE injection for writing require high voltages, which are typically in the range of 9 V to 15 V. However CHE injection in our devices was achieved with the single power supply of 5 V. To demonstrate CHE injection, substrate current (Isub) and one-shot programming curve were investigated. The memory window of about 3.2 V and the write speed of $100{\mu}s$ were obtained. Also, the disturbance and drain turn-on leakage during CHE injection were not affected in the SONOS array. These results show that CHE injection can be achieved with a low voltage and single power supply, and applied for the high speed program of the SONOS memory devices.

  • PDF

A Design of Ultra Wide Band Single-to-Differential Gain Controlled Low Noise Amplifier Using 0.18 um CMOS (0.18 um CMOS 공정을 이용한 UWB 단일 입력-차동 출력 이득 제어 저잡음 증폭기 설계)

  • Jeong, Moo-Il;Choi, Yong-Yeol;Lee, Chang-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.358-365
    • /
    • 2008
  • A differential-gain-controlled LNA is designed and implemented in 0.18 um CMOS technology for $3.1{\sim}4.8GHz$ UWB system. In high gain mode, measurements show a differential power gain of $14.1{\sim}15.8dB,\;13.3{\sim}15dB$, respectably, an input return loss higher then 10dB, an input IP3 of -19.3 dBm, a noise figure of $4.85{\sim}5.09dB$, while consuming only 19.8 mW of power from a 1.8V DC supply. In low gain mode, measurements show a differential power gain of $-6.1{\sim}-4.2dB,\;-7.6{\sim}-5.6dB$, respectably, an input return loss higher then 10dB, an input IP3 of -1.45 dBm, a noise figure of $8.8{\sim}10.3dB$, while consuming only 5.4mW of power from a 1.8V DC supply.