• Title/Summary/Keyword: 3차원 차량 모델

Search Result 91, Processing Time 0.026 seconds

Computer Simulations of 4-Wheeled Vehicle Manoeuvres Using a 3-Dimensional Double-Track Vehicle Model (3차원 차량모델을 이용한 자동차 주행거동의 컴퓨터 시뮬레이션)

  • Choi, Y.H.;Lee, J.H.;Lee, J.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.97-108
    • /
    • 1995
  • A 3-dimensional double track vehicle model, that has 12-degress-of-freedom, was proposed to analyze handling and riding behaviours of an automotive car. Nonlinear characteristics of the suspension and steering systems of the vehicle model were considered in its equations of motion, which were solved by using the 4th-order Runge-Kutta integration method. Computer simulations for lane change, steady-state handling, and running-over-bump manoeuvres were made and verified by vehicle tests on proving ground. The computed results of the proposed model showed better agreement with test results than those of the conventional 2-dimensional single track model did. Especially they showed good accuracy near the characteristic speed and in high lateral accelerated manoeuvres.

  • PDF

Real-time Localization of An UGV based on Uniform Arc Length Sampling of A 360 Degree Range Sensor (전방향 거리 센서의 균일 원호길이 샘플링을 이용한 무인 이동차량의 실시간 위치 추정)

  • Park, Soon-Yong;Choi, Sung-In
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.114-122
    • /
    • 2011
  • We propose an automatic localization technique based on Uniform Arc Length Sampling (UALS) of 360 degree range sensor data. The proposed method samples 3D points from dense a point-cloud which is acquired by the sensor, registers the sampled points to a digital surface model(DSM) in real-time, and determines the location of an Unmanned Ground Vehicle(UGV). To reduce the sampling and registration time of a sequence of dense range data, 3D range points are sampled uniformly in terms of ground sample distance. Using the proposed method, we can reduce the number of 3D points while maintaining their uniformity over range data. We compare the registration speed and accuracy of the proposed method with a conventional sample method. Through several experiments by changing the number of sampling points, we analyze the speed and accuracy of the proposed method.

Dynamic Analysis of PSC Bridge for a High-Speed Railway Vehicle Using Improved 38-Degree of Freedom Model (개선된 38자유도 차량모델을 이용한 고속철 PSC교량의 동적거동해석)

  • Oh, Soon-Taek;Sim, Young-Woo;Lee, Dong-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.797-803
    • /
    • 2010
  • A dynamic analysis procedure is developed to provide a better estimation of the dynamic responses of pre-stressed concrete (PSC) box girder bridges on the Korea high speed railway. Particularly, a three dimensional numerical model including the structural interaction between high speed vehicles, bridges and railway endures to analyze accurately and evaluate with in-depth parametric studies for dynamic responses of bridge due to the high speed railway vehicles. Three dimensional frame element is used to model the PSC box girder bridges, simply supported span lengths 40 m. The high-speed railway vehicles (K-TGV) including a locomotive are used as 38-degree of freedom system. Three displacements (vertical, lateral, and longitudinal) as well as three rotational components (pitching, rolling, and yawing) are considered in the 38-degree of freedom model. The dynamic analysis by Runge-Kutta method which are able to analyze considering the dynamic impact factors are compared and contrasted. It is proposed as an empirical formula that the impact factors damaged the bridge load-carrying capacities occurs to the bride due to high-speed vehicle.

Analysis of Dynamic Interaction Between Maglev Vehicle and Guideway (자기부상열차/가이드웨이 동적상호작용 해석)

  • Kim, Ki-Jung;Han, Hyung-Suk;Yang, Seok-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1559-1565
    • /
    • 2013
  • This study aims to investigate the dynamic interaction characteristics between Maglev vehicles and an elevated guideway. A more detailed model for the dynamic interaction of the vehicle/guideway is proposed. The proposed model incorporates a 3D full vehicle model based on prototyping, flexible guideway by a modal superposition method, and levitation electromagnets including the feedback controller into an integrated model. The proposed model was applied to an urban transit Maglev developed for a commercial application to analyze the dynamic response of the vehicle and guideway, and the effect of the surface roughness of the rail, mid-span guideway deflections, and air gap variations are then investigated from the numerical simulation.

Development of A Simulation for Automatic Installation of Detection Area by Image Detector (영상검지기의 검지영역 자동설정을 위한 모의실험기 개발)

  • 이병호;조형기;오영태;오세창
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.4
    • /
    • pp.139-152
    • /
    • 1998
  • 본 연구에서는 3차원그래픽스를 이용하여 영상검지기에서의 교통정보를 얻기 위한 검지영역 설정시 안정된 검지영역을 찾기 위한 시뮬레이터를 개발하였다. 기존의 영상검지기에서는 사용자가 임의로 검지영역을 설정하여 교통정보를 수집함으로 인하여 안정된 교통정보를 얻기가 어려웠으며, 영상카메라의 설치시 과다한 설치규격의 설정으로 비효율적 측면이 발생될 수 있다. 이러한 단점을 보완하기 위해서는 영상검지기를 현장에 설치하기 전에 영상검지기 설치를 위한 사전 모의실험을 토대로 최적의 안정된 설치위치 결정이 매우 중요하다. 본 연구에서 개발한 모의 실험기는 도로의 기하구조와 차량을 모델화 하고 이를 3차원으로 좌표화하여 좌표변환식과 원근변환식을 이용하여 3차원좌표를 2차원으로 변환시키고 컴퓨터 모니터에 투영하여 대상 설치위치에서의 결과를 가시화하였다. 본 연구는 개발된 모의실험기의 적용성 검토를 위하여 현재 영상검지기를 운영중에 있는 한 접근로를 대상으로 사례연구를 수행하였다. 수행결과 교통량과 통행속도계측시 최적검지영역 설정을 위한 영상검지기의 설치규격은 높이가 각각 7m, 12m이상이며, 수직각은 각각 $30^{\circ}$, $80^{\circ}$인 것으로 나타났다.

  • PDF

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

Temporal Prediction of Ice Accretion Using Reduced-order Modeling (차원축소모델을 활용한 시간에 따른 착빙 형상 예측 연구)

  • Kang, Yu-Eop;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.147-155
    • /
    • 2022
  • The accumulated ice and snow during the operation of aircraft and railway vehicles can degrade aerodynamic performance or damage the major components of vehicles. Therefore, it is crucial to predict the temporal growth of ice for operational safety. Numerical simulation of ice is widely used owing to the fact that it is economically cheaper and free from similarity problems compared to experimental methods. However, numerical simulation of ice generally divides the analysis into multi-step and assumes the quasi-steady assumption that considers every time step as steady state. Although this method enables efficient analysis, it has a disadvantage in that it cannot track continuous ice evolution. The purpose of this study is to construct a surrogate model that can predict the temporal evolution of ice shape using reduced-order modeling. Reduced-order modeling technique was validated for various ice shape generated under 100 different icing conditions, and the effect of the number of training data and the icing conditions on the prediction error of model was analyzed.

3D Object Modeling for Laser Radar Simulation (레이저레이더 시뮬레이션을 위한 3차원 객체 모델링)

  • Kim, Geun-Han;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • The improvement of the performance in laser radar simulation requires fast retrievals of the spatial locations and attributes of objects in response to the laser signals of the simulators. Since the data used in simulation are complex 3D objects such as terrain, buildings and vehicles, and are of large sizes, commonly used 3D modeling tools are not suitable for this use. We proposed a method to store such 3D objects in a database, perform required queries and integrate with visualization tools. We showed the processes for the data modeling based on 3D topological concepts and then building a spatial DBMS. Also, we illustrated the process for accessing and visualizing the stored data using VRML and performed test computations using some laser signal data. With further enhancement on data modeling and LOD problems in visualization, the proposed method will be practically applied in different situations including laser simulation.

  • PDF

Study on Dowel-Bar Optimum Position of Jointed Concrete Pavement Using 3-D FEM Analysis (3차원 유한요소해석을 이용한 줄눈콘크리트 포장의 다웰바 최적배치에 대한 연구)

  • Chon, Beom Jun;Hong, Seong Jae;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2D
    • /
    • pp.135-141
    • /
    • 2010
  • Dowel bar in the jointed concrete pavement has been designed and constructed by Foreign standard and experience in Korea. The behavior of dowel bar is explored based in analyze of 3-Dimension Finite Element Method. To evaluate behavior of dowel bar compared Timoshenko theory and 3-Dimensional Finite Element Method. Based on the 3-Dimension Finite Element Method analyze the dowel-bar optimum position that can reduce deflections of slabs by considering wheel path distributions was suggest in this study.

Validation of Driver Steering Model with Vehicle Test (실차 실험을 통한 운전자 조향 모델의 검증)

  • Chung Taeyoung;Lee Gunbok;Yi Kyongsu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, validation of Driver Steering Model has been conducted. The comparison between the simulation model and vehicle test results shows that the model is very feasible for describing combined human driver and actual vehicle dynamic behaviors. The 3D vehicle model is consisted of 6-DOF sprung mass and 4-quarter car model for vehicle body dynamics. Powertrain model including differential gear and Pacejka tire model are applied. The driver steering model is also validated with vehicle test result. The driver steering model is based on angle and displacement error from the desired path, recognized by driver.