Real-time Localization of An UGV based on Uniform Arc Length Sampling of A 360 Degree Range Sensor

전방향 거리 센서의 균일 원호길이 샘플링을 이용한 무인 이동차량의 실시간 위치 추정

  • Park, Soon-Yong (School of Computer Science and Engineering, Kyungpook National University) ;
  • Choi, Sung-In (Graduate School of Electrical Engineering and Computer Science, Kyungpook National University)
  • 박순용 (경북대학교 IT대학 컴퓨터학부) ;
  • 최성인 (경북대학교 대학원 전자전기컴퓨터학부)
  • Received : 2011.08.17
  • Published : 2011.11.25

Abstract

We propose an automatic localization technique based on Uniform Arc Length Sampling (UALS) of 360 degree range sensor data. The proposed method samples 3D points from dense a point-cloud which is acquired by the sensor, registers the sampled points to a digital surface model(DSM) in real-time, and determines the location of an Unmanned Ground Vehicle(UGV). To reduce the sampling and registration time of a sequence of dense range data, 3D range points are sampled uniformly in terms of ground sample distance. Using the proposed method, we can reduce the number of 3D points while maintaining their uniformity over range data. We compare the registration speed and accuracy of the proposed method with a conventional sample method. Through several experiments by changing the number of sampling points, we analyze the speed and accuracy of the proposed method.

본 논문에서는 무인 지상 차량의 (Unmanned Ground Vehicle, UGV)의 위치 추정을 위한 컴퓨터 비전 기술을 제안한다. 제안하는 방법은 연속적으로 획득되는 360도 거리 정보(range data)와 디지털 수치모델(Digital Surface Model, 이하 DSM)의 3차원 등록(3-D registration) 방법에 기반하고 있다. 많은 수의 3차원 점군(point clouds) 정보를 가지고 있는 거리 정보의 연속적 3차원 등록은 상당한 수행 시간을 필요로 한다. 실시간 위치 추정을 위해 우리는 투영 기반의 등록 방법과 Uniform Arc Length Sampling(이하 UALS) 방법을 제안한다. UALS는 거리영상에서의 GSD(ground sample distance)를 균일하게 유지하면서 동시에 3차원 샘플 포인트의 수를 줄일 수 있는 장점을 가지고 있다. 또한 투영 기반 등록 기술은 3차원 대응점의 탐색 시간을 감소시킨다. 두 개의 실제 항법 경로를 이용한 실험을 통하여 제안하는 방법의 성능을 검증하였다. 3차원 점군의 다양한 샘플링에 대하여 제안하는 기술의 속도 및 정합 성능을 기존 방법과 비교하였다.

Keywords

References

  1. Hartley R. I., and Zisserman A., Multiple View Geometry in Computer Vision. Cambridge University Press., 2000.
  2. Park S. Y. and Subbarao M., "An Accurate and Fast Point-to-Plane Registration Technique," Pattern Recognition Letter, Vol. 24 No. 16, pp. 2967-2976, 2003. https://doi.org/10.1016/S0167-8655(03)00157-0
  3. Downs A., Madhavan R., and Hong T., "Registration of Range Data from Unmanned Aerial and Ground Vehicles," The 32nd Applied Imagery Pattern Recognition Workshop, pp. 45 -50, 2003.
  4. A. Johnson, "Spin-Images: A Representation for 3-D Surface Matching", Ph.D. Thesis, CMU, 1997.
  5. Batlle E. , Matabosch C. and Salvi J., "Overview of 3D registration techniques including loop minimization for the complete acquisition of large manufactured parts and complex environments," Proceedings of the SPIE, Vol. 6356, pp. 635605, 2007.
  6. Besl, P. J. and McKay., N. D., "A method for registration of 3-D shapes," IEEE Trans. on Pattern Recognition and Machine Intelligence, Vol. 14, No. 2, pp. 239-256, 1992. https://doi.org/10.1109/34.121791
  7. S. Rusinkiewicz and M. Levoy, "Efficient variants of the ICP algorithm," Proc. 3D Digital Imaging and Modeling, pp. 145-152, 2001.
  8. Madhavan, R., Hong, T., and Messina, E. "Temporal range registration for unmanned ground and aerial vehicles," Journal of Intelligent and Robotic Systems, Vol. 44, No. 1, pp. 47 - 69, 2007.
  9. Triebel, R., Pfaff, P., and Burgard, W., "Multi-level surface maps for outdoor terrain mapping and loop closing," In Int'l Conf. on Intelligence Robotics and Systems(IROS), pp. 2276-2282, 2006.
  10. Levinson, J., Montemerlo, M., and Thrun, S., "Map based precision vehicle localization in urban environments," In Proc. of Robotics: Science and Systems, 2007.
  11. Himmelsbach, M., Muller, A., Luttel, T., and Wunsche, H., "Lidar- based 3d object perception," In Proc. of the 1st Int'l Workshop on Cognition for Technical Systems, 2008.
  12. Kummerle, R., Hahnel, D., Dolgov, D., Thrun, S., and Burgard, W., "Autonomous driving in a multi-level parking structure," In Proc. of the IEEE Int'l Conf. on Robotics and Automation, 2009.
  13. Park S. Y., Choi S. I., Moon J., Kim J., and Park Y. W., "Localization of an unmanned ground vehicle using 3D registration of laser range data and DSM," Workshop of Applications of Computer Vision (WACV), 2009.
  14. Park S. Y. and Choi S. I., "Real-time localization of an unmanned ground vehicle using a 360 degree range sensor," International Conference on Computer Vision Theory and Applications, 2011.