3차원 정보의 올바른 정합을 위해서 3차원 정보 자신 뿐만이 아니라 3차원 정보와 연관된 영상 정보를 이용한다. 먼저 영상의 정합을 수행함에 있어 서로 다른 두 영상간에 상관 윈도우를 씌워 상관계수를 계산하여 최적 정합점을 탐색한다. 본 논문에서는 카메라의 서로 다른 관점으로 인한 상관위도우의 뒤틀림을 3차원 초기 변환 행렬을 이용하여 보정하는 방법을 제안하고, 이에 의해 3차원 변환된 상관 윈도우를 정합에 이용함으로서 상관계수의 정확도를 급격히 향상시킨다. 그 결과로 개선된 특징점 정합 결과로부터 영상 전반에 걸친 3차원 특징점 정합을 통해 이와 대응하는 3차원 정보의 정확한 정합 결과를 얻는다.
본 논문은 영상과 연관된 3차원 정보로부터 초기 3차원 변환을 유추, 상관윈도우를 변환시켜 정합에 이용하는 새로운 정합기법을 제안한다. 즉, 초기 스테레오 정합 등을 통한 3차원 정보를 추출하고, 인위적인 초기 특징점의 대응을 통해 3차원 변환을 얻으며, 이를 이용해 상관 윈도우의 3차원 변환을 가능하게 한다. 상관 윈도우의 3차원 변환은 기존의 방법이 가지는 영상 흐름의 2차원적인 제한을 이용한 정합방법에 비해 실제 카메라의 변환 유추에 합당하다. 또한 3차원 변환을 통해 정합 대상 점의 탐색범위를 최소화하고 정합의 결과에 신뢰성을 더한다. 실험에서는 다양한 영상의 정합 결과와 기존 방법과의 상관 계수 비교를 통해 본 논문이 제안하는 정합방법의 우월성을 보인다.
본 논문은 3차원 모델링을 위한 두 개의 3차원 데이터들을 정합하는데 있어서 효율적인 방법을 제안한다. 3차원 데이터들은 서로 임의의 각도에서 취득한 것으로 취득 장치의 위치 및 2차원 영상정보가 포함 되어있다. 이 정보들을 이용하여 보다 빠르고 정확한 정합을 이루는 방법을 제안한다. 2차원 영상정보를 이용하여 보다 쉽게 대응점들을 찾아내는 것으로 대응하는 4개의 점에 대한 체적을 이용하여 모형의 크기를 일치시킨다. 또한, 이 점들로부터 얻어낸 좌표축의 호모그라피(homography)를 추출해냄으로써 2개의 데이터에 대한 정합과정은 보다 빠르고 정확하게 이루어진다. 제안한 알고리즘의 장점은 2차원 영상정보를 이용하기 때문에 정합하는 데에 있어서 오류가 적고 반복하는 과정이 불필요하다. 또한, 취득된 2차원 영상정보를 정합하고, 이를 3차원 모형에 2차원 영상을 씌움으로써 정합은 완벽하게 이루어진다.
본 논문에서는 수술 전에 획득한 전산화 단층촬영영상에서 추출한 3차원 정보를 수술 중에 획득한 2차원 X-선 투시영상에 실시간으로 표시하기 위하여 표식기 기반 고속 2차원-3차원 영상정합 방법을 제안한다. 정합과정은 전처리 과정과 실시간 정합 과정으로 나누어진다. 전처리 과점에서 가장 많은 계산량을 필요로 하는 DRR의 생성을 그래픽 하드웨어를 이용하여 고속으로 생성하고, 표식기를 부착한 심장 모형데이타에서 자동으로 표식기를 탐색 추출 한다. 실시간 정합 과정은 주축 정합을 이용한 평면 내부 정합과 구좌표계에서 최소 오차 탐색 방법을 이용한 평면 외부 정합 방법으로 분리하여 계층적으로 정합하여 탐색 범위를 6자유도에서 2자유도로 개선하였다. 본 제안방법은 실시간 계산을 최소화함으로써 정확성을 유지하면서 정합의 효율성을 개선하였다.
본 논문에서는 실물체의 3차원 모델을 복원하기 위해 거리영상 카메라에서 획득된 3차원 점군에 대한 온라인 정합 기법을 제안한다. 제안하는 방법은 거리영상 카메라를 사용하여 연속된 거리영상과 사진영상을 획득하고 문턱값(threshold)을 이용하여 물체와 배경에 대한 정보를 분류한다. 거리영상에서 특징점을 선택하고 특징점에 해당하는 거리영상의 3차원 점군을 이용하여 투영 기반 정합을 실시한다. 초기정합이 종료되면 사진영상간의 대응점을 추적하여 거리영상을 정제하는 과정을 거치는데 대응점 추적에 사용되는 KLT(Kanade-Lucas-Tomasi) 추적기를 수정하여 초기정합의 결과를 대응점 탐색에 이용함으로써 탐색의 속도와 성공률을 증가시켰다. 특징점과 추적된 대응점에 해당하는 3차원 점군을 이용하여 거리영상의 정제를 수행하고 정합이 완료되면 오프라인에서 3차원 모델을 합성하였다. 제안한 알고리듬을 적용하여 2개의 실물체에 대하여 실험을 수행하고 3차원 모델을 생성하였다.
최근 실세계에 존재하는 물체의 3차원 형상과 색상을 디지털화하는 3차원 객체 복원에 대한 관심이 날로 증가하고 있다. 3차원 객체 복원은 영상 획득, 영상 보정, 점군 획득, 반복적 점군 정합, 무리 조정, 3차원 모델 표현과 같은 단계를 거처 통합된 3차원 모델을 생성한다. 그 중 반복적 점군 정합 방법은 카메라 궤적의 초기 값을 획득하는 방법으로서 무리 조정 단계에서 전역 최적 값으로의 수렴을 보장하기 위해 중요한 단계이다. 기존의 반복적 점군 정합 (iterative closest points) 방법에서는 시간이 지남에 따라 누적된 궤적 오차 때문에 발생하는 객체 표류 문제가 발생한다. 본 논문에서는 이 문제를 해결하기 위해 색상 영상에서 SIFT 특징점을 획득하고 3차원 점군을 얻은 뒤 가중치를 부여함으로써 점 군 간의 더 정확한 정합을 수행한다. 실험결과에서 기존의 방법과 비교하여 제안하는 방법이 절대 궤적 오차 (absolute trajectory error)가 감소하는 것을 확인 했고 복원된 3차원 모델에서 객체 표류 현상이 줄어드는 것을 확인했다.
본 논문은 동영상 내의 얼굴을 특정인 얼굴로 자동 변환 및 정합하는 기술을 제안한다. 얼굴에 나타난 동작이나 표정은 높은 자유도로 인하여 기존에 사용되어온 2차원적이고 고정된 물체 위주의 동영상 정합 기술로는 자연스러운 결과물을 얻기가 어렵다. 본 논문에서는 입력 받은 정면 유사방향의 사진으로부터 3차원 얼굴 모델을 복원한다. 각 프레임에 등장한 얼굴의 3차원 방향을 추출하여 복원한 3차원 얼굴 모델에 적용한 후 대체할 얼굴 영역에 저합시킨다. 정합 과정 시 비디오 프레임 내의 조명효과와 얼굴색 등을 분석하고 3차원 얼굴 모델에 블렌딩하여 비디오 프레임과 자연스럽게 정합할 수 있도록 한다.
본 논문에서는 물체의 3차원 모델을 복원하기 위하여 거리영상 카메라에서 획득한 다시점 3차원 거리영상을 온라인으로 정합(registration)하는 기술을 제안한다. 3차원 모델 복원을 위하여 거리영상 카메라를 복원하고자하는 물체 주위로 이동하여 연속된 다시점 거리영상과 사진영상을 획득하고 물체와 배경을 분리한다. 분리된 다시점 거리영상의 정합을 위하여 이미 등록된 거리영상의 변환정보 그리고 두 거리영상 사이의 기하정보를 이용하여 정합을 초기화한다. 위 과정을 통해 서로 인접한 거리영상에서 영상 특징점을 선택하고 특징점에 해당하는 거리영상의 3차원 점군을 이용하여 투영 기반(projection-based) 정합을 실시한다. 기하정합이 완료되면 사진영상 간의 대응점을 추적하여 정합을 정제(refinement)하는 과정을 거치는데 KLT (Kanade-Lucas-Tomasi) 추적기를 수정하여 대응점 탐색의 속도와 성공률을 증가시켰다. 영상 특징점과 추적된 대응점에 해당하는 3차원 점군을 이용하여 거리영상을 정제하였다. 정합과 정제의 결과를 통해 추정된 변환 행렬과 정합된 대응점들 사이의 거리를 계산하여 정합 결과를 검증하고 거리영상의 사용 여부를 결정한다. 만약 정합이 실패하더라도 경우에도 거리영상을 실시간으로 계속 획득하고 정합을 다시 시도한다. 위와 같은 과정을 반복하여 충분한 거리 영상을 획득하고 정합이 완료되면 오프라인에서 3차원 모델을 합성하였다. 실험 결과들을 통해 제안한 방법이 3차원 모델을 성공적으로 복원할 수 있음을 확인 할 수 있었고 오차 분석을 통해 모델 복원의 정확도를 검증하였다.
MRI, CT, MRI, PET, SPECT, fMRI 등과 같은 단층의료영상은 병원에서 환자의 진단 및 치료 임상적 연구에서 폭넓게 사용되고 있다. 동일한 대상에 대하여 서로 다른 정보를 얻거나 비교를 하기 위하여 서로 다른 영상양식으로 촬영하거나 시간적 간격을 두고 단층영상을 획득하는 경우가 많다. 3차원 영상정합은 비교하고자 하는 두 영상을 하나의 3차원 좌표 공간으로 지도화하는 것이며, 크게 마커기반 정합과 특징기반 정합으로 분류된다. 뇌 영상의 3차원 정합은 뇌 수술부위 선정, 뇌 기능 연구, 뇌 지도화 연구 등에서 시각적 분석과 정량적 분석에서 중요한 위치를 차지한다. 본 논문에서는 뇌의 단층영상에 대하여 흔히 사용되고 있는 3차원 정합인 마커기반 정합법과 특징기반 정합법에 대하여 소개하고 이에 대한 비교 고찰을 행하고자 한다.
본 논문은 한 물체에 대해 스캔 위치 정보가 없는 여러 시점의 레인지 이미지들로부터 3차원 형상 복원을 위한 정합 알고리즘을 제안한다. 기존의 정합 방법은 스캔 위치 정보와 기하학 정보를 이용하여 레인지 이미지들을 정렬시킨 반면, 본 논문의 정합 방법은 스캔 위치와는 독립적으로 수행되며 기하학 정보와 텍스쳐 정보를 함께 이용하여 정렬시킨다. 그러므로 텍스쳐가 있는 여러 장의 레인지 이미지들로부터 3차원 형상을 보다 정확하고 효율적으로 복원할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.