• Title/Summary/Keyword: 3차원 점성 유동

Search Result 65, Processing Time 0.02 seconds

Study on the Fluid-Surface Characteristics by Using Flow Visualization and Numerical Simulation of Stokes Flow in a Cavity (3차원 캐버티 표면의 스톡스 유동 가시화 및 수치해석을 통한 표면 특성 연구)

  • Heo, Hyo-Weon;Lee, Heon-Deok;Jung, Won-Hyuk;Cho, Dong-Sik;Suh, Yong-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.44-50
    • /
    • 2011
  • In this study, we propose a method for characterizing fluid-mechanical properties of a fluid surface, such as surface dilatational and shear viscosity, by matching the flow visualization and the numerical simulation for a Stokes flow in a three-dimensional cavity. The surface flow is driven by shear stress exerted on the free surface by an external gas flow. The external gas flow is simulated by using a commercial code, while the Stokes flow is calculated by an in-house code. We have found that the surface flow is very sensitive to the surface tension and other properties. The qualitative feature of the surface flow can be reproduced by the parameter tuning.

Computation of 3-Dimensional Unsteady Viscous Plows Using an Parallel Unstructured Mesh (병렬화된 비정렬 격자계를 이용한 3차원 비정상 점성 유동 계산 기법 개발)

  • Kim J.S.;Kwon O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.18-24
    • /
    • 2003
  • In the present study, solution algorithms for the connotation of unsteady flows on an unstructured mesh me presented Dual time stepping is incorporated to achieve the 2-nd order temporal accuracy while reducing the linearization and the factorization errors associated with a linear solver. Hence, any time step can be used by only considering physical phenomena. Gauss-Seidel scheme is used to solve linear system of equations. Rigid motion and suing analogy method for moving mesh are all considered and compared. Special treatments of suing analogy for high aspect ratio cells are presented. Finally, numerical results for oscillating ing are compared with experimental data.

  • PDF

Numerical study of Three-Dimensional Characteristics of Flow Field and Compression Wave Induced by High Speed Train Entering into a Tunnel (터널에 진입하는 고속전철에 의한 3차원 점성유동과 압축파 특성에 관한 수치해석적 연구)

  • Shin C. H.;Park W. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.91-98
    • /
    • 2000
  • The three-dimensional unsteady compressible Full Navier-Stokes equation solver with sliding multi-block method has been applied to analyze three dimensional characteristics of the flow field and compression wave around the high speed train which Is entering into a tunnel. The numerical scheme of AF + ADI was used to efficiently solve Navier-Stokes equations in the curvilinear coordinate system. The vortex formation around the nose region was found and the generation of compression wave due to the blockage effects was observed ahead of the train in the form of plane wave. The three dimensional characteristics of the flow field compared to the analytic results were discussed in detail. The variation of pressure of tunnel wall surface and velocity profile of the train are identified as the train enters into a tunnel. The changes in aerodynamic forces and streamlines of each specific sections are also discussed and presented.

  • PDF

Study on the Stokes' Flow within a Three-Dimensional Cavity Considering Surface Characteristics (액체의 표면 특성을 고려한 3차원 캐버티 내부의 스톡스 유동 특성 연구)

  • Heo, Hyo-Weon;Jung, Won-Hyuk;Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.382-386
    • /
    • 2011
  • In this study, a CFD code is developed to perform simulation of the surface and internal flow of a three-dimensional rectangular cavity driven by an external gas flow. Investigated in this study are surface characteristic such as surface tension, surface dilational viscosity(or surface elasticity), and surface viscosity. Visualization of the surface of water is performed to compare with the numerical results obtained with the developed in-house code. We have found that the surface flow is very sensitive to the surface tension and other configurations. The surface flow velocity obtained from the numerical solution is lower than the experimental result.

  • PDF

An Analysis on Three-dimensional Viscous Flow Fields in the Volute Casing of a Small-size Turbo-compressor (소형터보압축기 볼류트 내부의 3차원 점성 유동장 해석)

  • Kim, D.W.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.777-782
    • /
    • 2000
  • The flow fields in the volute casing of a small-size turbo-compressor at different flowrate (design point ${\pm}20%$) are studied by numerical analysis. The governing equations for three-dimensional steady viscous flow are solved using SIMPLE algorithm with commercial code of STAR-CD. Numerical results show that the three-dimensional flow pattern inside the volute casing of a small-size turbo-compressor is strongly influenced by secondary flows that are typically created by the curvature or the casing passages. The flow pattern in the casing also affects the performance of the turbo-compressor. In order to elucidate the loss mechanism through the volute, we prepared the secondary flow, velocity magnitude, and static pressure distribution at the four cross-sectional planes of the casing.

  • PDF

Numerical Simulation of 2-D Wing-In-Ground Effect (2차원 해면효과의 수치계산)

  • Yang Chen-Jun;Shin Myung-Soo
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.54-62
    • /
    • 1998
  • 본 논문은 2차원 해면효과의 수치계산 결과를 정리하였다. 지면으로부터의 높이변화에 따른 점성유동장을 계산하기 위하여 지배방정식으로는 비압축성 RANS 방정식을, 시간에 대하여서는 음해법으로 프로그램을 구성하였다. 압력항은 가상압축성과 4차 수치확산항을 추가하는 것에 의해 계산하였으며, 높은 레이놀즈 수에서의 효과적인 계산을 위해 Baldwin- Lomax 난류모델을 도입하였다. 해면효과가 없는 무한유중에서의 NACA-0012 단면 계산결과를 실험 데이터와 비교하는 것에 의해 프로그램의 타당성을 확인하였다. NACA-6409와 두께 비 4.6%의 날개에 대하여 해면효과를 고려한 계산을 수행하였다. 계산결과, 높이의 변화에 따라 계산된 무차원계수, 압력 및 속도분포는 해면효과의 특성을 잘 보여주고 있다.

  • PDF

Critical Reynolds Number for the Occurrence of Nonlinear Flow in a Rough-walled Rock Fracture (암반단열에서 비선형유동이 발생하는 임계 레이놀즈수)

  • Kim, Dahye;Yeo, In Wook
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.291-297
    • /
    • 2019
  • Fluid flow through rock fractures has been quantified using equations such as Stokes equations, Reynolds equation (or local cubic law), cubic law, etc. derived from the Navier-Stokes equations under the assumption that linear flow prevails. Therefore, these simplified equations are limited to linear flow regime, and cause errors in nonlinear flow regime. In this study, causal mechanism of nonlinear flow and critical Reynolds number were presented by carrying out fluid flow modeling with both the Navier-Stokes equations and the Stokes equations for a three-dimensional rough-walled rock fracture. This study showed that flow regimes changed from linear to nonlinear at the Reynolds number greater than 10. This is because the inertial forces, proportional to the square of the fluid velocity, increased enough to overwhelm the viscous forces. This tendency was also shown for the unmated (slightly sheared) rock fracture. It was found that nonlinear flow was caused by the rapid increase in the inertial forces with increasing fluid velocity, not by the growing eddies that have been ascribed to nonlinear flow.

On the Flow Characteristics around a Circular Cylinder according as the Water Depth from the Free Surface (자유수면에 인접한 원형실린더형 몰수체 주위의 유동특성에 관한 연구)

  • Gim, Ok-Sok;Shon, Chang-Bae;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.331-336
    • /
    • 2010
  • The free surface influenced the wake behind a circular cylinder and its effects were investigated experimentally in a circulating water channel with the variation of water depth. Instantaneous velocity fields were measured in this paper. The measured results has been compared with each other to investigate the flow characteristics of the circular cylinder's 2-dimensional section at $Re=1.0{\times}10^3$ using 2-frame grey level cross correlation PIV method. The flow around the circular cylinder with free surface affected the wake structure. Especially, in case of d=1.0D, the boundary layer was measured in the whole area. The separation point and boundary layer of the circular cylinder could be controlled by the water depth.

A Numerical Computation of Viscous Flow around a Wigley Hull For with Appendages (부가물이 부착된 Wigley선형 주위의 점성유동 해석)

  • Park, J.J.;Park, S.S.;Lee, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.39-47
    • /
    • 1997
  • In the present paper, viscous flow fields around a wigley hull with appendages are analysed to study interactions between the hull and appendages. Navier-Stokes and continuity equations are solved by a finite volume method in a body-fitted coordinate system which conforms three dimensional ship geometries with appendages. A Sub-Grid Scale(SGS) turbulent model is used for a calculation of high Reynolds number flow. Numerical computations has been done for a Wigley hull form at $Rn=1.0{\times}10^6$. The results show that the present approach can predict, at least in qualitative sense, the influence of the appendages upon the flow field around a ship.

  • PDF

Incompressible Viscous Flow Analysis Around a Three Dimensional Minivan-Like Body (3차원 미니밴 형상 주위의 비압축성 점성 유동 해석)

  • Jung Y. R.;Park W. G.;Park Y. J.;Kim J. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.46-51
    • /
    • 1996
  • The flow field around a three dimensional minivan-like body has been simulated. This study solves 3-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using second-order accurate schemes for the time derivatives, and third/second-order scheme for the spatial derivatives. The Marker-and-Cell concept is applied to efficiently solve continuity equation. The fourth -order artificial damping is added to the continuity equation for numerical stability. A H-H type multi-block grid system is generated around a three dimensional minivan-like body. Turbulent flows have been modeled by the Baldwin-Lomax turbulent model. The simulation shows three dimensional vortex-pair just behind body. And the flow separation is also observed the rear of the body. It has concluded that the results of present study properly agree with physical flow phenomena.

  • PDF