• Title/Summary/Keyword: 3차원 전기비저항 역산

Search Result 57, Processing Time 0.026 seconds

Electrical Resistivity Response Due to the Variation of Embankment Shape and Reservoir Level (제체형태와 수위에 따른 전기비저항 반응 연구)

  • Oh, Seok-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.214-220
    • /
    • 2008
  • The distortion effect of electrical response for two-dimensional (2-D) DC resistivity method was verified in terms of 2-D inversion result of synthetic data obtained by three-dimensional (3-D) modeling, which is frequently applied to assess the safety of center core-type fill dam structure. The distortion effect is due to 2-D interpretation for 3-D structure. By the modeling analysis, we found that the water level is correctly described in the resistivity section around the middle part rather than each end side of the embankment due to the 3-D terrain effect, when the material of the embankment is assumed as horizontally uniform. And when we set the slope of outer rock fill part as uniform. the sharper the slope of the center core is, the more similar the resistivity section reflects. On the other hand, when the slope of the rock fill is steep, the resistivity section shows the water level at lower position than the real one, and the 3-D distortion effect at the end side of the embankment was enhanced.

Dipole-Dipole Array Geoelectric Survey for Gracture Zone Detection (전기비저항 탐사법을 이용한 지하 천부 파쇄대 조사)

  • Kim, Geon Yeong;Lee, Jeong Mo;Jang, Tae U
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.217-224
    • /
    • 1999
  • Although faults can be found by geological surveys, the surface traces of faults are not easily discovered by traditional geological surveys due to alluvia. In and around faults and fracture zones, the electrical resistivity appears to be lower than that of the surroundings due to the content of groundwater and clay minerals. Therefore, electrical resistivity surveys are effective to search buried faults and fracture zones. The dipole-dipole array electrical resistivity surveys, which could show the two dimensional subsurface electrical resistivity structure, were carried out in two areas, Yongdang-ri, Woongsang-eup, Yangsan-si, Kyungsangnam-do and Malbang-ri, Woedong-eup, Kyungju-si, Kyungsangpook-do. The one was next to the Dongrae Fault and the other near the Ulsan Fault was close to the region in which debatable quaternary fault traces had been found recently. From each measured data set, the electrical resistivity cross-section was obtained using the inversion program the reliability of which was analyzed using analytic solutions. A low resistivity zone was found in the inverted cross-section from the Yongdang-ri area survey data, and two low resistivity zones were found in that from the Malbang-ri area survey data. They were almost vertical and were 15∼20 m wide. Accounting the shape and the very low resistivity values of those zones (<100 Ωm)in the inverted section, they were interpreted as fracture zones although they should be proven by trenching. The reliability of the interpretation might be improved by adding some more parallel resistivity survey lines and interpreting the results in 3 and/or adding other geophysical survey.

  • PDF

Three-dimensional magnetotelluric surveys for geothermal development in Pohang, Korea (포항지역 지열 개발을 위한 3 차원 자기지전류 탐사)

  • Lee, Tae-Jong;Song, Yoon-Ho;Uchida, Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • A three-dimensional (3D) magnetotelluric (MT) survey has been carried out to delineate subsurface structures and possible fractures, for development of low-temperature geothermal resources in Pohang, Korea. Quite good quality MT data could be obtained throughout the survey region by locating the remote reference in Kyushu, Japan, which is ${\sim}480\;km$ from the centre of the field site. 3D modelling and inversion are performed taking into account the sea effect in MT measurements near the seashore. The nearby sea in the Pohang area affects MT data at frequencies below $1\;Hz{\sim}0.2\;Hz$, depending on the distance from the seashore. The most severe sea effects were observed in the south-east parts of the survey area, closer to Youngil Bay. 3D inversion with and without the seawater constraint showed very similar results at shallow depths, roughly down to 2 km. At greater depths, however, a strong sea effect seems to form a fictitious conductive structure in ordinary 3D inversion, especially in the south-eastern part of the survey region. Comparison between drilling results and the resistivity profiles from inversions showed that five layered structures can be distinguished the subsurface beneath the target area. They are: (a) semi-consolidated mudstones with resistivity less than $10\;{\Omega}m$, which are ${\sim}300\;m$ thick in the northern part and ${\sim}600\;m$ thick in the southern part of the survey area; (b) occasional occurrence of trachybasalt and lapilli tuff within the mudstone layer has resistivity of a few tens of${\Omega}m$, (c) intrusive rhyolite ${\sim}400\;m$ thick has resistivity of several hundreds of ${\Omega}m$, (d) alternating sandstone and mudstone down to 1.5 km depth shows resistivity of ${\sim}100\;{\Omega}m$, (e) a conductive structure was found at a depth of ${\sim}3\;km$, but more geological and geophysical study should be carried out to identify this structure.

대수층을 통한 해수침투의 정량적 평가를 위한 전기비저항 탐사 적용

  • Song, Seong-Ho;Lee, Gyu-Sang;Kim, Jin-Seong;Seong, Baek-Uk;U, Myeong-Ha;Seol, Min-Gu;Lee, Byeong-Ho;Gwon, Byeong-Du
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.93-102
    • /
    • 2005
  • 변산반도 서부 해안지역의 소규모 유역에 대하여 대수층을 통한 해수침투의 범위를 공간적으로 규명하기 위하여, 시추자료를 포함한 전기비저항 탐사와 지하수의 수질분석을 실시하였다. 전기비저항 탐사는 다층 구조로 되어있는 대수층 내 지하수의 수질변화 특성을 효과적으로 탐지해 낼 수 있는 수직탐사법을 이용하였으며, 탐사결과 겉보기비저항 곡선은 H type에 해당함을 알았다. 시추에 의해 3층 구조로 밝혀진 연구지역에 대하여 총 30 지점에 대한 H type 수직탐사 자료의 1차원 역산결과, 중간층과 상/하부층의 비저항 크기 차이가 크게 나타남에 따라 이 연구에서는 고전도도 지역, 중간지역, 저전도도지역 등 3가지의 영역으로 구분하였다. 15개 지점의 천부 지하수 관정에서 채취된 지하수 시료 분석결과를 TDS에 대한 HCO3/Cl과 Ca/Na 몰비로 도시하였는데, 그래프의 기울기에 따라 크게 2가지 그룹으로 구분되었다. 수직탐사의 3가지 영역과 지하수 수질 분석에 의한 2가지 그룹을 비교한 결과 낮은 농도의 HCO3/Cl과 Ca/Na를 나타내는 관정은 고전도도 지역에 위치하며, 높은 농도의 HCO3/Cl과 Ca/Na를 나타내는 관정은 저전도도 지역에 위치하는 것으로 나타났다. 따라서 이 연구에서 제시한 바와 같이 전기비저항 수직탐사 결과와 지하수 수질분석 결과를 복합 해석하는 경우 시추자료가 제한적인 해안지역 대수층을 통한 해수침투 범위를 효과적으로 규명할 수 있는 것으로 밝혀졌다.

  • PDF

$-{\rho}a$ by One Steel Casing Borehole near Resistivity Survey Line (비저항 측선 근처 철케이싱 시추공 한개에 의한 $-{\rho}a$)

  • Jung, Hyun-Key
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.83-86
    • /
    • 2006
  • From numerical modeling test $-{\rho}a$ by one steel casing borehole near resistivity survey line can be acquired. Negative apparent resistivities even in the flat area are surely subsurface information. Inversion technique for those need to be developed in the near future.

  • PDF

Electric Resistive Tomography using Finite Element Method and Genet (유한요소법과 유전 알고리즘을 이용한 전기비저항 탐사법의 저항역산)

  • Lim, Sung-Ki;Kim, Min-Kyu;Kim, Hong-Kyu;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.3-5
    • /
    • 1997
  • 지구 물리학이나 의공학 분야등에서 이용되왔던 전기비저항 탐사법은 관심 영역에 전류 입력을 가한 후, 그에 대한 전압 응답을 측정하여 관심 영역 내의 전기비저항 분포를 규명하는 방법으로서 역해석 문제의 범주에 포함된다. 따라서 일반적인 역해석 문제가 지니고 있는 해의 존재성, 유일성, 그리고 측정 데이터에 대한 해의 연속적 의존성이라는 기본적 문제들을 가지게된다. 이러한 역해석 문제의 해결에는 정확한 정해석 풀이법과 효율적인 역해석 방법이 요구되어진다. 본 논문에서는 정해석 방법으로 유한요소법을, 역해석 방법으로는 전체 최적점을 발견할 가능성이 높은 유전 알고리즘을 최적화 방법으로 사용하였다. 기존의 역해석 문제의 해결책으로 제시되어왔던 기울기 방법에 기반한 결정론적 최적화 알고리즘들이 지니고 있는 국소해로의 수렴, 즉 단순한 전기비저항 분포의 불연속성 확인이라는 한정된 정보의 획득을 넘어서 실제 전기비저항 분포와 가장 가까운 분포는 전체 최적점 근처에서 발견될 수 있음을 보이고자 한다. 이러한 전기비저항 분포의 역해석적인 규명을 간단한 2차원 수치해석문제를 풀어보므로서 확인해본다.

  • PDF

Site Investigation of a Reclaimed Saline Land by the Small Loop EM Method (소형루프 전자탐사법에 의한 간척지 지반조사)

  • Kim, Ki-Ju;An, Dong-Kuk;Cho, In-Ky;Kim, Bong-Chan;Kyung, Keu-Ha;Hong, Jae-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.175-180
    • /
    • 2010
  • The small loop electromagnetic (EM) method is a fast and convenient geophysical tool which can provide resistivity distribution of shallow subsurface. Especially, it can be a useful alternative of resistivity method in a very conductive environment such as a reclaimed saline land. We applied the multi-frequency small loop EM method for the site investigation of reclaimed saline land. We inverted the measured EM data using one dimensional (1D) inversion program and merged to obtain three dimensional (3D) resistivity distribution over the survey area. Finally, comparing he EM results with the drill log and measured soil resistivity sampled at 16 drill holes, we can define the site character such as thickness of landfill, salinity distribution, and etc.

Behavior of Normalized Voltage Curves in the Resistivity Method (전기비저항 탐사에서 전위감쇠곡선의 거동특성)

  • Cho, In-Ky;Lee, Keun-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.364-369
    • /
    • 2010
  • Resistivity data should be edited before the inversion because resistivity data are contaminated by a lot of noise. Generally, outlier or data violating pants-leg effect in dipole-dipole array were used to be rejected in the apparent resistivity pseudo-section. For more precise data editing, normalized voltage curves are used. In this study, we analyzed the behavior of normalized voltage curves for pole-pole, pole-dipole and dipole-dipole arrays in the presence of threedimensional inhomogeneities, and finally re-examined the validity of normalized voltage curves in the editing process of resistivity data.

Imaging of Fractures and Tunnel by 3-D ERT (전기비저항 토모그래피에 의한 파쇄대 및 터널의 3차원 영상화)

  • Yi, Myeong-Jong;Kim, Jung-Ho;Son, Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.302-309
    • /
    • 2008
  • ERT imaging, especially 3-D method, is a very powerful means to obtain a very high resolution image of the subsurface for geotechnical or hydrogeological problems. In this paper, we introduce two examples of successful case histories, where the imaging targets were three-dimensional. First example is the case of 3-D fracture imaging for hydrogeologic application. In this example, the borehole deviation was a critical problem in the ERT imaging and we could obtain real 3-D attitude of fracture system by including the borehole deviation in the inversion. In the second case, we did field experiment to image the empty tunnel with the size of $2m{\times}2m$ and the target was very clearly imaged in 3-D space. In these examples, we could show that 3-D ERT imaging is a very powerful tool for the 3-D subsurface imaging and the method can provide enhanced imaging capabilities especially for the 3-D targets such as fractures and cavities or tunnel.

Three-Dimensional Resistivity Modeling by Serendipity Element (Serendipity 요소법에 의한 전기비저항 3차원 모델링)

  • Lee, Keun-Soo;Cho, In-Ky;Kang, Hye-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • A resistivity method has been applied to wide range of engineering and environmental problems with the help of automatic and precise data acquisition. Thus, more accurate modeling and inversion of time-lapse monitoring data are required since resistivity monitoring has been introduced to quantitatively find out subsurface changes With respect to time. Here, we used the finite element method (FEM) for 3D resistivity modeling since the method is easy to realize complex topography and arbitrary shaped anomalous bodies. In the FEM, the linear elements, also referred to as first order elements, have certain advantages of simple formulation and narrow bandwidth of system equation. However, the linear elements show the poor accuracy and slow convergence of the solution with respect to the number of elements or nodes. To achieve the higher accuracy of finite element solution, high order elements are generally used. In this study, we developed a 3D resistivity modeling program using high order Serendipity elements. Comparing the Serendipity element solutions for a cube model with the linear element solutions, we assured that the Serendipity element solutions are more accurate than the linear element solutions in the 3D resistivity modeling.