• Title/Summary/Keyword: 3차원 객체 추적

Search Result 56, Processing Time 0.025 seconds

Biomimetic approach object detection sensors using multiple imaging (다중 영상을 이용한 생체모방형 물체 접근 감지 센서)

  • Choi, Myoung Hoon;Kim, Min;Jeong, Jae-Hoon;Park, Won-Hyeon;Lee, Dong Heon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.91-93
    • /
    • 2016
  • From the 2-D image extracting three-dimensional information as the latter is in the bilateral sibeop using two camera method and when using a monocular camera as a very important step generally as "stereo vision". There in today's CCTV and automatic object tracking system used in many medium much to know the site conditions or work developed more clearly by using a stereo camera that mimics the eyes of humans to maximize the efficiency of avoidance / control start and multiple jobs can do. Object tracking system of the existing 2D image will have but can not recognize the distance to the transition could not be recognized by the observer display using a parallax of a stereo image, and the object can be more effectively controlled.

  • PDF

Development of Motion Recognition Platform Using Smart-Phone Tracking and Color Communication (스마트 폰 추적 및 색상 통신을 이용한 동작인식 플랫폼 개발)

  • Oh, Byung-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.143-150
    • /
    • 2017
  • In this paper, we propose a novel motion recognition platform using smart-phone tracking and color communication. The interface requires only a camera and a personal smart-phone to provide a motion control interface rather than expensive equipment. The platform recognizes the user's gestures by the tracking 3D distance and the rotation angle of the smart-phone, which acts essentially as a motion controller in the user's hand. Also, a color coded communication method using RGB color combinations is included within the interface. Users can conveniently send or receive any text data through this function, and the data can be transferred continuously even while the user is performing gestures. We present the result that implementation of viable contents based on the proposed motion recognition platform.

An Efficient Location Encoding Method Based on Hierarchical Administrative District (계층적 행정 구역에 기반한 효율적인 위치 정보 표현 방식)

  • Lee Sang-Yoon;Park Sang-Hyun;Kim Woo-Cheol;Lee Dong-Won
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.299-309
    • /
    • 2006
  • Due to the rapid development in mobile communication technologies, the usage of mobile devices such as cell phone or PDA becomes increasingly popular. As different devices require different applications, various new services are being developed to satisfy the needs. One of the popular services under heavy demand is the Location-based Service (LBS) that exploits the spatial information of moving objects per temporal changes. In order to support LBS efficiently, it is necessary to be able to index and query well a large amount of spatio-temporal information of moving objects. Therefore, in this paper, we investigate how such location information of moving objects can be efficiently stored and indexed. In particular, we propose a novel location encoding method based on hierarchical administrative district information. Our proposal is different from conventional approaches where moving objects are often expressed as geometric points in two dimensional space, (x,y). Instead, in ours, moving objects are encoded as one dimensional points by both administrative district as well as road information. Our method is especially useful for monitoring traffic situation or tracing location of moving objects through approximate spatial queries.

Using POSTIT Eye Gaze Tracking in Real-time (POSTIT정보 이용한 실시간 눈동자 시선 추적)

  • Kim, Mi-Kyung;Choi, Yeon-Seok;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.750-753
    • /
    • 2012
  • A method detecting the position of eyes and tracking a gaze point of eyes in realtime using POSIT is suggested in this paper. This algorithm find out a candidate area of eyes using topological characteristics of eyes and then decides the center of eyes using physical characteristics of eyes. To find the eyes, a nose and a mouth are used for POSIT. The experimental results show that proposed method effectively performed detection of eyes in facial image in FERET databases and gave high performance when used for tracking a gaze point of eyes.

  • PDF

Visual Servoing for Humanoid Robot in a Distributed Environment (분산 환경에서 휴머노이드 로봇의 비주얼 서보잉)

  • Jie, Min-Seok;Hong, Seung-Beom;Lee, Joong-Jae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.705-713
    • /
    • 2009
  • This paper proposes CORBA-based visual servoing system of humanoid robot. To effectively control the humanoid robot which is connected to network, it needs to define necessary services for visual servoing as distribution object, and realize them in the middleware. For realizing it following services should be addressed. Naming service for searching a necessary service with unique name assigned to each object, image service for supplying image obtained from stereo camera. In the experiment, we show the result of balloon tracking and bursting that the robot tracks balloons as target objects in the real time, and if a balloon stop for a certain time, then the robot bursts the balloon.

  • PDF

Implementation of Constructor-Oriented Visualization System for Occluded Construction via Mobile Augmented-Reality (모바일 증강현실을 이용한 작업자 중심의 폐색된 건축물 시각화 시스템 개발)

  • Kim, Tae-Ho;Kim, Kyung-Ho;Han, Yunsang;Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.55-68
    • /
    • 2014
  • Some infrastructure these days is usually constructed under the ground for it to not interfere the foot-traffic of pedestrians, and thus, it is difficult to visually confirm the accurate location of the site where the establishments must be buried. These technical difficulties increase the magnitude of the problems that could arise from over-reliance on the experience of the worker or a mere blueprint. Such problems include exposure to flood and collapse. This paper proposes a constructor-oriented visualization system via mobile gadgets in general construction sites with occluded structures. This proposal is consisted with three stages. First, "Stage of detecting manhole and extracting features" detects and extracts the basis point of occluded structures which is unoccluded manhole. Next, "Stage of tracking features" tracks down the extracted features in the previous stage. Lastly, "Stage of visualizing occluded constructions" analyzes and synthesizes the GPS data and 3D objects obtained from mobile gadgets in the previous stages. This proposal implemented ideal method through parallel analysis of manhole detection, feature extraction, and tracking techniques in indoor environment, and confirmed the possibility through occluded water-pipe augmentation in real environment. Also, it offers a practical constructor-oriented environment derived from the augmented 3D results of occluded water-pipings.

Real-time moving object tracking and distance measurement system using stereo camera (스테레오 카메라를 이용한 이동객체의 실시간 추적과 거리 측정 시스템)

  • Lee, Dong-Seok;Lee, Dong-Wook;Kim, Su-Dong;Kim, Tae-June;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.14 no.3
    • /
    • pp.366-377
    • /
    • 2009
  • In this paper, we implement the real-time system which extracts 3-dimensional coordinates from right and left images captured by a stereo camera and provides users with reality through a virtual space operated by the 3-dimensional coordinates. In general, all pixels in correspondence region are compared for the disparity estimation. However, for a real time process, the central coordinates of the correspondence region are only used in the proposed algorithm. In the implemented system, 3D coordinates are obtained by using the depth information derived from the estimated disparity and we set user's hand as a region of interest(ROI). After user's hand is detected as the ROI, the system keeps tracking a hand's movement and generates a virtual space that is controled by the hand. Experimental results show that the implemented system could estimate the disparity in real -time and gave the mean-error less than 0.68cm within a range of distance, 1.5m. Also It had more than 90% accuracy in the hand recognition.

Automation of Building Extraction and Modeling Using Airborne LiDAR Data (항공 라이다 데이터를 이용한 건물 모델링의 자동화)

  • Lim, Sae-Bom;Kim, Jung-Hyun;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • LiDAR has capability of rapid data acquisition and provides useful information for reconstructing surface of the Earth. However, Extracting information from LiDAR data is not easy task because LiDAR data consist of irregularly distributed point clouds of 3D coordinates and lack of semantic and visual information. This thesis proposed methods for automatic extraction of buildings and 3D detail modeling using airborne LiDAR data. As for preprocessing, noise and unnecessary data were removed by iterative surface fitting and then classification of ground and non-ground data was performed by analyzing histogram. Footprints of the buildings were extracted by tracing points on the building boundaries. The refined footprints were obtained by regularization based on the building hypothesis. The accuracy of building footprints were evaluated by comparing with 1:1,000 digital vector maps. The horizontal RMSE was 0.56m for test areas. Finally, a method of 3D modeling of roof superstructure was developed. Statistical and geometric information of the LiDAR data on building roof were analyzed to segment data and to determine roof shape. The superstructures on the roof were modeled by 3D analytical functions that were derived by least square method. The accuracy of the 3D modeling was estimated using simulation data. The RMSEs were 0.91m, 1.43m, 1.85m and 1.97m for flat, sloped, arch and dome shapes, respectively. The methods developed in study show that the automation of 3D building modeling process was effectively performed.

Statistical Model of 3D Positions in Tracking Fast Objects Using IR Stereo Camera (적외선 스테레오 카메라를 이용한 고속 이동객체의 위치에 대한 확률모델)

  • Oh, Jun Ho;Lee, Sang Hwa;Lee, Boo Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.89-101
    • /
    • 2015
  • This paper proposes a statistical model of 3-D positions when tracking moving targets using the uncooled infrared (IR) stereo camera system. The proposed model is derived from two errors. One is the position error which is caused by the sampling pixels in the digital image. The other is the timing jitter which results from the irregular capture-timing in the infrared cameras. The capture-timing in the IR camera is measured using the jitter meter designed in this paper, and the observed jitters are statistically modeled as Gaussian distribution. This paper derives an integrated probability distribution by combining jitter error with pixel position error. The combined error is modeled as the convolution of two error distributions. To verify the proposed statistical position error model, this paper has some experiments in tracking moving objects with IR stereo camera. The 3-D positions of object are accurately measured by the trajectory scanner, and 3-D positions are also estimated by stereo matching from IR stereo camera system. According to the experiments, the positions of moving object are estimated within the statistically reliable range which is derived by convolution of two probability models of pixel position error and timing jitter respectively. It is expected that the proposed statistical model can be applied to estimate the uncertain 3-D positions of moving objects in the diverse fields.

Performance Improvement of Pedestrian Detection using a GM-PHD Filter (GM-PHD 필터를 이용한 보행자 탐지 성능 향상 방법)

  • Lee, Yeon-Jun;Seo, Seung-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.150-157
    • /
    • 2015
  • Pedestrian detection has largely been researched as one of the important technologies for autonomous driving vehicle and preventing accidents. There are two categories for pedestrian detection, camera-based and LIDAR-based. LIDAR-based methods have the advantage of the wide angle of view and insensitivity of illuminance change while camera-based methods have not. However, there are several problems with 3D LIDAR, such as insufficient resolution to detect distant pedestrians and decrease in detection rate in a complex situation due to segmentation error and occlusion. In this paper, two methods using GM-PHD filter are proposed to improve the poor rates of pedestrian detection algorithms based on 3D LIDAR. First one improves detection performance and resolution of object by automatic accumulation of points in previous frames onto current objects. Second one additionally enhances the detection results by applying the GM-PHD filter which is modified in order to handle the poor situation to classified multi target. A quantitative evaluation with autonomously acquired road environment data shows the proposed methods highly increase the performance of existing pedestrian detection algorithms.