• Title/Summary/Keyword: 3점 굽힘강도

Search Result 54, Processing Time 0.022 seconds

Flexibility of resin splint systems for traumatized teeth (외상성 치아모형에서의 레진 스플린트 시스템의 유연성 비교연구)

  • Park, Jin-Hong;Shin, Joo-Hee;Ryu, Jae-Jun;Lee, Jeong-Yol;Shin, Sang Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.4
    • /
    • pp.389-393
    • /
    • 2017
  • Purpose: The aim of this study is to evaluate the flexural strength of flexible resins and the flexibility of different resin splint (RS) systems in comparison with resin wire splint (RWS) system. Materials and methods: Three different resin materials (G-aenial flo, GA, GC; Superbond, SB, Sun medical; G-fix, GF, GC) were tested flexural strength test in accordance with ISO-4049:2000. For the flexibility test of splint systems, a artificial model with resin teeth was used to evaluate three types of resin splint systems (GA, SB, and GF) and one resin wire splint system. The left central incisor was simulated 'injured teeth' with third degree mobility. Three consecutively repeated measurements of periotest value were taken in horizontal direction, before and after splinting to access tooth mobility. The splinting effect was calculated through the periotest value. Differences were evaluated through One-way Anova and Tukey HDS post-hoc tests for pair-wise comparison (${\alpha}=.05$). Results: Although GA group showed significant higher flexural strength than SB and GF groups, all of three different resin splint systems produced a significantly higher and rigid splinting effect compared with 016" resin-wire splint system (P < .05). Conclusion: Within the limits of an in vitro study, it can be stated that resin splint systems are too rigid and may not be acceptable to treat tooth avulsion.

The effects of brazing conditions on the bond strength of the SiC/SiC and SiC/mild steel joints brazed by Ag-Ti based alloys (Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에서 브레이징 조건이 접합강도에 미치는 영향의 연구)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.104-114
    • /
    • 1997
  • The microstructure and bond strength were investigated on the SiC/SiC and SiC/mild steel joints brazed by Ag-5at%Ti alloy. Ag-5at%Ti-2at%Fe and -5at%Fe brazing alloys were also used to see the effects of Fe addition on the bond strength of SiC/SiC brazed joints. Brazing temperature and brazing gap were selected and examined as brazing variables. The microstructure of SiC/SiC brazed joints was affected by Fe addition to the Ag-5at%Ti alloy, but the bond strength was not. Increasing brazing temperature also changed the microstructure of $Ti_5Si_3$ reaction layer and brazing alloy matrix of the SiC/SiC and SiC/mild steel joints, but not the bond strength. Brazing gap had a great effects on the bond strength. Decreasing brazing gap from 0.2 mm to 0.1 mm in SiC/SiC brazing increased the bond strength from 187 MPa to 263 MPa and, in SiC/mild steel brazing, from 189 MPa to 212 MPa. It was concluded that the most important parameter on the bond strength in SiC/SiC and SiC/mild steel brazing was the relative ratio between brazing gap and specimen size.

  • PDF

Bond strength of fiber reinforced composite after repair (섬유 강화 컴포지트의 수리 후 접합 강도)

  • Kim, Min-Jung;Kim, Kyung-Ho;Choy, Kwang-Chul
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.188-197
    • /
    • 2006
  • Fiber reinforced composite (FRC) is usually used as a connector joining a few teeth into one unit in orthodontics. However, fracture often occurs during the two to three years of the orthodontic treatment period due to repeated occlusal loading or water sorption in the oral environment. We simulated the repair by overlapping and attaching portions of two FRC strips in the middle and performed a three-point bending test to investigate the changes of the repair strength among the different FRC groups. The specimens were grouped according to the overlapping lengths of the two FRC strips, which were 1, 2, 3 and 4 mm (group E1, E2, E3 and E4, respectively) and the control group consisted of unrepaired, intact FRC strips. Each group consisted of 6 specimens and were cured with a light emitting diode curing unit. Group E4 showed the highest maximum loads of 2.67 N, then the control group (2.39 N), group E3 (2.35 N), E2 (2.10 N), and E1 (1.75 N) in decreasing order. Group E4 also showed the highest stiffness, which was 2.32 N/mm, however, the stiffness of group E3 (2.06N/mm) was higher than that of the control group (1.88 N/mm). According to the visual examination, the specimens tended to be bent rather than being fractured into two pieces with an increased length of overlapping portions. The above results suggest that a minimum overlapping length of 3 mm was necessary to obtain an adequate repair of a 10 mm length of FRC connector. In addition, the critical section adjacent to the joint area, where the thickness decreased abruptly, should be reinforced with flowable resin to minimize the bending tendency.

Fatigue Design of Spot Welded Lap Joint Considered Residual Stress (잔류응력을 고려한 점용접이음재의 피로설계)

  • Son, Il-Seon;Bae, Dong-Ho;Hong, Jeong-Gyun;Lee, Beom-No
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.743-751
    • /
    • 2000
  • Because welding residual stress is formidable result in electric resistance spot welding process, and it detrimentally affect to fatigue crack initiation and growth at nugget edge of spot welded la p joints, it should be considered in fatigue analysis. Thus, accurate prediction of residual stress is very important. In this study, nonlinear finite element analysis on welding residual stress generated in process of the spot welding was conducted, and their results were compared with experimental data measured by X-ray diffraction method. By using their results, the maximum principal stress considered welding residual stress at nugget edge of the spot welded lap joint subjected to tension-shear load was calculated by superposition method. And, the $\Delta$P- $N_f$ relations obtained through fatigue, tests on the IB-type spot welded lap joints was systematically rearranged with the maximum principal stress considered welding residual stress. From the results, it was found th2at fatigue strength of the IB-type spot welded lap joints could be systematically and more reasonably rearranged by the maximum principal stress($\sigma$1max-res considered welding residual stress at nugget edge of the spot welding point.

Comparison of flexural strength according to thickness between CAD/CAM denture base resins and conventional denture base resins (CAD/CAM 의치상 레진과 열중합 의치상 레진의 두께에 따른 굴곡 강도 비교)

  • Lee, Dong-Hyung;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.183-195
    • /
    • 2020
  • Purpose: The purpose of this study is to compare the flexural strength of CAD/CAM denture base resins with conventional denture base resins based on their thicknesses. Materials and Methods: For the conventional denture base resins, Lucitone 199® (C-LC) was used. DIOnavi - Denture (P-DO) and DENTCA Denture Base II (P-DC) were taken for the 3D printing denture base resins. For the prepolymerized PMMA resins, Vipi Block Gum (M-VP) and M-IVoBase® CAD (M-IV) were used. The final dimensions of the specimens were 65.0 mm x 12.7 mm x 1.6 mm / 2.0 mm / 2.5 mm. The 3-point bend test was implemented to measure the flexural strength and flexural modulus. Microscopic evaluation of surface of fractured specimen was conducted by using a scanning electron microscope (SEM). After testing the normality of the data, one-way ANOVA was adopted to evaluate the differences among sample groups with a significance level of P = 0.05. The Tukey HSD test was performed for post hoc analysis. Results: Under the same thicknesses, there are significant differences in flexural strength between CAD/CAM denture base resins and conventional denture base resins except for P-DO and C-LC. M-VP showed higher flexural strength than conventional denture base resins, P-DC and M-IV displayed lower flexural strength than conventional denture base resins. Flexural modulus was highest in M-VP, followed by C-LC, P-DO, P-DC, M-IV, significant differences were found between all materials. In the comparison of flexural strength according to thickness, flexural strength of 2.5 mm was significantly higher than that of 1.6 mm in C-LC. Flexural strength of 2.5 mm and 2.0 mm was significantly higher than that of 1.6 mm in P-DC and M-VP. In M-IV, as the thickness increases, significant increase in flexural strength appeared. SEM analysis illustrates different fracture surfaces of the specimens. Conclusion: The flexural strength of different CAD/CAM denture base resins used in this study varied according to the composition and properties of each material. The flexural strength of CAD/CAM denture base resins was higher than the standard suggested by ISO 20795-1:2013 at a thickness of 1.6 mm or more though the thickness decreased. However, for clinical use of dentures with lower thickness, further researches should be done regarding other properties at lower thickness of denture base resins.

The Effect of Packing Method of Relining Material on the Flexural Strength of Denture Base Resin (첨상용 레진의 성형법이 의치상의 굴곡강도에 미치는 영향)

  • Kim, Min-Chul;Kim, Yu-Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.197-207
    • /
    • 2011
  • The study aimed at examining how different reline resins affect flexural strength and flexural modulus of denture base. A total of 80 specimens ($64{\times}10{\times}3.3$ mm, according to ISO 1567:1999) of heat-polymerized resin, 40 specimens for (Lucitone199(Dentsply Int., NewYork, USA), SR Ivocap(Ivoclar AG, Schaan, Liechtenstein)) respectively, were polymerized according to the manufacturer's instructions and divided into eight groups(n = 10). Control group specimens remained intact. Specimens in the other groups were abraded on both sides to 2 mm thickness, and were relined in 1.3 mm thickness with 3 types of resins (Lucitone199(Dentsply), SR Ivocap(Ivoclar), and Rebase II(Tokuyama Co., Ltd, Tokyo, Japan)). All specimens were preserved in distilled water at $37^{\circ}C$ for 50 hours, and then were subjected to flexural strength testing in a universal testing machine using 3-point loading. A crosshead speed of 5 mm/min was used, and the distance between the supports was 50 mm. Data analyses included one-way analysis of variance(ANOVA) and the Tukey Honestly Significant Difference test (p=.05). Both heat-polymerized resin groups and auto-polymerized resin groups showed statistically low flexural strength and flexural modulus than control groups. Specimens relined with Lucitone 199 showed significantly higher flexural strength and flexural modulus than those relined with SR-Ivocap. Specimens relined with auto-polymerized resin showed significantly lower flexural strength and flexural modulus than those relined with heat-polymerized resin. Relining with heat-polymerized resins showed superior mechanical properties to relining with an auto-polymerized resin. Relining with the same heat-polymerized resin as the denture base does not affect mechanical properties of a denture. Lucitone199 using a compression-mould technique resulted in the highest flexural strength.

Characterization of crack self-healing of silicon carbide by hot press sintering (열간가압소결법으로 제조한 탄화규소의 균열자기치유 특성)

  • Kim, Seong-Hoon;Kim, Kyung-Hun;Dow, Hwan-Soo;Park, Joo-Seok;Kim, Kyung-Ja;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.2
    • /
    • pp.62-66
    • /
    • 2016
  • In this study, it was investigated that characteristic of crack-self-healing of hot-pressed SiC. SiC ceramics was sintered with $Al_2O_3$ and $Y_2O_3$ sintering additive by hot press. Sintering was performed in hot-press furnace in flowing argon (Ar), holding for 3 hr under $1950^{\circ}C$ and 50 MPa. The sintered SiC was machined into 3-point bending strength specimen of $3{\times}4{\times}40mm$, and introduced pre-crack by Vickers indentation at 49.6 N. Specimens were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), 3-point bending strength after heat treatment at $1200{\sim}1400^{\circ}C$ for 1~10 hr. The best crack-self-healing ability was achieved 770 MPa 3-point bending strength by heat treatment at $1300^{\circ}C$ for 5 hr.

Liquid Silicon Infiltrated SiCf/SiC Composites with Various Types of SiC Fiber (다양한 SiC 섬유를 적용한 실리콘 용융 침투 공정 SiCf/SiC 복합재료의 제조 및 특성 변화 연구)

  • Song, Jong Seob;Kim, Seyoung;Baik, Kyeong Ho;Woo, Sangkuk;Kim, Soo-hyun
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.77-83
    • /
    • 2017
  • Liquid silicon infiltration, which is one of the methods of producing fiber reinforced ceramic composites, has several advantages such as low fabrication cost and good shape formability. In order to confirm LSI process feasibility of SiC fiber, $SiC_f/SiC$ composites were fabricated using three types of SiC fibers (Tyranno SA, LoxM, Tyranno S) which have different crystallinity and oxygen content. Composites that were fabricated with LSI process were well densified by less than 2% of porosity, but showed an obvious difference in 3-point bending strength according to crystallinity and oxygen content. When composites in LSI process was exposed to a high temperature, crystallization and micro structural changes were occurred in amorphous SiOC phase in SiC fiber. Fiber shrinkage also observed during LSI process that caused from reaction in fiber and between fiber and matrix. These were confirmed with changes of process temperature by SEM, XRD and TEM analysis.

Effect of h-BN Content on Microstructure and Mechanical Properties of AIN Ceramics (AIN 세라믹스의 미세조직과 기계적 성질에 미치는 h-BN 첨가의 영향)

  • 이영환;김준규;조원승;조명우;이은상;이재형
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.874-880
    • /
    • 2003
  • The effect of h-BN content on microstructure, mechanical properties, and machinability of AlN-BN based machinable ceramics were investigated. The relative density of sintered compact decreased with increasing h-BN content. The four-point flexural strength also decreased from 238 MPa of monolith up to 182 MPa by the addition of 30 vol% h-BN. Both low Young's modulus and residual tensile stress, formed by the thermal expansion coefficient difference between AIN and h-BN, might cause the strength drop in AlN-BN composite. The crack deflection, and pull-out phenomena increased by the plate-like h-BN. However, the fracture toughness decreased with h-BN content. The second phases, consisted of YAG and ${\gamma}$-Al$_2$O$_3$, were formed by the reaction between Al$_2$O$_3$ and Y$_2$O$_3$. During end-milling process, feed and thrust forces measured for AlN-(10~30) vol% BN composites decreased with increasing h-BN particles, showing excellent machinability. Also, irrespective of h-BN content, relatively good surfaces with roughness less than 0.5 m (Ra) could be achieved within short lapping time.

Effect of titanium powder on the bond strength of metal heat treatment (티타늄 파우더가 금속의 열처리 시 결합강도에 미치는 영향)

  • Kim, Sa-Hak;Kim, Wook-Tae
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.71-79
    • /
    • 2017
  • Purpose: Ni-Cr alloy does not contain Beryllium, causing the metal compound to form oxides in the furnace but by using Titanium as a chemical catalyst the forming of the oxides can be controlled, and by controlling the impurities formed on the metal surface, the possibility of the Ni-Cr alloy bond strength being increased can be analysed. Materials and Methods: Titanium was used as a chemical catalyst in the porcelain for the oxidation of beryllium-free metal (Ni-Cr) alloy. The T1 group, which does not use Titanium power as a chemical catalyst is a reference model for comparison. The T2 group and T3 group used 10 g and 20 g of Titanium power, respectively. They are fabricated to observe the shear bond strength and surface properties. There was no significance when One-way ANOVA analysis/Tukey Honestly Significant Difference Test was conducted for statistical analysis among groups (P > 0.05). Results: Results of measuring the three-point flexural bond strength of the Ni-Cr alloy and thickness of the oxide film. Experiment T3 using 20 g Titanium chemical catalyst: $39.22{\pm}3.41MPa$ and $6.66{\mu}m$, having the highest bond strength and thinness of oxide film. Experiment T2 using 10 g Titanium chemical catalyst: $34.65{\pm}1.39MPa$ and $13.22{\mu}m$. Experiment T1 using no Titanium chemical catalyst: $32.37{\pm}1.91MPa$ and $22.22{\mu}m$. Conclusion: The T2 and T3 experiments using Titanium chemical catalyst showed higher bond strength for the Ni-Cr alloy and lower thickness of oxide film than experiment T1, and the titanium catalyst being able to increase bond strength was observed.