• 제목/요약/키워드: 3세대 이동통신 시스템

검색결과 246건 처리시간 0.022초

도심 환경을 고려한 마이크로파 대역 MIMO 전파 채널 측정 시스템에 관한 연구 (Study on the Measurement System for MIMO Channel Considering Urban Environment at Microwave Frequencies)

  • 임재우;권세웅;문현욱;박윤현;윤영중;육종관;정진섭;김종호
    • 한국전자파학회논문지
    • /
    • 제18권10호
    • /
    • pp.1142-1149
    • /
    • 2007
  • 본 논문은 국내 도심 환경을 고려한 마이크로파 대역 다중 안테나 전파 채널 특성을 연구하기 위한 광대역 MIMO 채널 측정 시스템 구축과 성능 확인을 위한 시험 측정을 기술하였다. 차세대 이동 통신을 고려하여 채널 측정 시스템은 고속의 스위칭 방식과 100 MHz의 광대역 채널 대역폭을 지원하도록 설계되었으며, $4{\times}4$ MIMO 채널 측정을 지원한다. 시스템 성능 확인 및 교정을 위한 시험 측정을 분당 빌딩 밀집 지역에서 실시하였다. 3.7 GHz와 8 GHz의 도심 LOS 구간의 시험 측정 데이터를 분석한 결과, 3.7 GHz 및 8 GHz 대역에서의 광대역경로 손실 지수는 각각 1.79와 1.76으로 측정되었으며, 평균 RMS 지연 확산은 각각 200 ns과 42 ns로 측정되었다. 시험 측정 결과, 본 MIMO 채널 측정 시스템은 실외 도심 환경에서 커버리지와 신호대 잡음비 및 채널 용량 등의 마이크로파 대역 전파 특성 연구에 적합함을 확인하였다.

발사체의 속도가 FTS 수신기의 성능에 미치는 영향 (Effects of Launching Vehicle's Velocity on the Performance of FTS Receiver)

  • 강상기
    • 한국위성정보통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.27-32
    • /
    • 2014
  • 무선통신 시스템에서는 운용하는 송신기나 수신기의 이동에 의해서 도플러 주파수 천이가 발생하며, 도플러 주파수 천이나 송수신기 사이에 존재하는 주파수 오프셋을 제거해야 원하는 성능을 얻을 수 있다. FTS(Flight Termination System)는 공공의 안전과 발사체의 비정상적인 임무 수행을 막기 위해서 사용되는데 발사체의 경우에는 지구 탈출을 위해서 초기 속도가 아주 빠르고 그에 따라서 도플러 주파수 천이도 아주 크다. 최근 차세대 FTS의 도입을 위한 연구가 활발히 진행 중이며, 새로운 FTS를 도입하기 위해서는 도입하는 시스템에 대한 도플러 주파수의 영향을 검토해야 한다. 본 논문에서는 발사체의 도플러 주파수 천이가 FTS 수신기의 성능에 미치는 영향을 분석하였으며, 디지털 방식의 FTS와 톤 방식의 FTS에 미치는 영향으로 나누어 분석하였다. 디지털 방식의 FTS인 EFTS(Enhanced FTS)에서는 비동기 DPSK(Differential PSK)와 비동기 CPFSK(Continuous Phase FSK)에 미치는 영향을 중점적으로 검토하였고, 200Hz의 도플러 주파수 천이가 채널코딩을 적용한 비동기 DPSK와 비동기 CPFSK에 미치는 영향을 시뮬레이션 하였다. 시뮬레이션 결과 BER이 $10^{-5}$ 근처에서 RS코딩은 약 0.5dB의 $E_b/N_o$가 악화되었고, 컨볼루션코딩과 BCH코딩은 성능변화가 거의 없거나 $E_b/N_o$가 0.1dB 정도 악화되었다. 톤 방식의 FTS에서는 수신기가 직교검파기를 사용하는 경우에 대해서 분석하였으며, 직교검파인 경우에는 도플러 주파수 천이의 영향을 거의 받지 않는다.

GPGPU 기반의 변위증분 방법을 이용한 중간시점 고속 생성 (Fast Generation of Intermediate View Image Using GPGPU-Based Disparity Increment Method)

  • 구자명;서영호;김동욱
    • 한국정보통신학회논문지
    • /
    • 제17권8호
    • /
    • pp.1908-1918
    • /
    • 2013
  • 자유시점 또는 오토스테레오스코픽 비디오 서비스는 3차원 영상을 제공하는 차세대 방송 시스템으로, 여러 시점의 영상들이 필요하다. 본 논문에서는 가상 시점 영상을 고속 생성하기 위해 알고리즘 병렬 구조를 최적화하고, Compute Unified Device Architecture(CUDA)를 이용한 General Propose Graphic Processing Unit(GPGPU) 기반의 중간시점 영상 고속 생성을 위한 최적화 기법을 제안한다. 제안한 방법은 좌/우 깊이영상을 병렬화시킨 스테레오 정합알고리즘을 이용하여 변위정보를 얻은 후, 깊이 당 변위증분을 계산하여 사용한다. 계산된 변위증분을 사용하여 해당 각 화소들의 깊이 값을 이용하여 좌/우 영상들을 원하는 위치의 중간시점으로 영상을 이동시킨다. 그 다음, 비폐색영역들을 서로 상호 보완하여 없앤 다음에 남은 홀들은 홀 필링으로 없애 최종 중간시점 영상을 생성한다. 제안한 방법을 구현하여 여러 실험 영상에 적용한 결과, 생성된 중간시점 깊이영상의 화질은 평균 PSNR 30.47dB이었으며, Full HD급 중간시점 영상을 초당 38 프레임 정도 생성하는 속도를 보였다.

OFDM 방식의 차세대 무선 LAN 환경에서 등화기의 성능 분석 (The Performance Analysis of Equalizer for Next Generation W-LAN with OFDM System)

  • 한경수;윤희상
    • 한국항행학회논문지
    • /
    • 제6권1호
    • /
    • pp.44-51
    • /
    • 2002
  • 무선 LAN(W-LAN)은 IEEE 802.11a, 802.11b의 표준이 제정됨에 따라 전송 속도도 수십 Mbps까지 고속으로 발전되어 왔고, 현재 여러 대학과 기업체에서 무선 LAN(W-LAN)을 많이 보급하고 있으며, 또한 통신 사업자들도 일부 제한된 지역(지하철 구내)에서 W-LAN을 설치하여 일반인에게 서비스하고 있다. 이와 같이 무선 LAN의 확산으로 서비스를 이용하는 사람들이 날로 증가 추세에 있으나 서비스 면에서 문제점들도 대두되고 있다. 특히 건물과 전파의 방해물이 많이 존재하는 도심 지역에서 데이터를 고속으로 전송하려면 상대적으로 주파수가 높아짐에 따라 무선 접속 장치(AP : Access Point)와 이동국(노트북등 단말기)간에 ISI(Inter Symbol Interference)가 발생하여 주파수 선택성 페이딩 채널 환경이 되어 데이터의 끊김과 에러가 발생하는 등 사용자에게 양질의 서비스를 제공하지 못하는 사례가 자주 있어 왔다. 본 논문에서는 다중 경로 채널 환경에서 ISI 영향을 가장 적게 받을 수 있는 OFDM 시스템을 적용하여 성능을 분석 평가 하였다. 데이터 변조 방식으로는 IEEE 802.11a에 근거한 부 반송파의 수가 52개인 BPSK, QPSK, 16QAM 방식을 적용하였고, 구속장이 7이고 부호율이 1/2, 3/4인 천공된 컨벌루셔널 부호를 사용하였으며 성능이 개선됨을 확인하였다. 특히 페이딩의 영향을 많이 받는 무선 채널 환경에서 단일 텝 등화기 및 결정 궤환 등화기(DFE : Decision Feedback Equalizer)를 적용하여 성능이 월등히 향상되고 단말기가 이동 시에도 데이터의 단절 등이 없음을 시물레이션을 통해 입증 하였다.

  • PDF

14b 100MS/s $3.4mm^2$ 145mW 0.18un CMOS 파이프라인 A/D 변환기 (A 14b 100MS/s $3.4mm^2$ 145mW 0.18um CMOS Pipeline A/D Converter)

  • 김영주;박용현;유시욱;김용우;이승훈
    • 대한전자공학회논문지SD
    • /
    • 제43권5호
    • /
    • pp.54-63
    • /
    • 2006
  • 본 논문에서는 4세대 이동 통신 시스템에서 요구되는 사양을 위해, 해상도, 동작속도, 칩 면적 및 소모 전력을 최적화한 14b 100MS/s 0.18um CMOS ADC를 제안한다. 제안하는 ADC는 동작 모델 시뮬레이션을 통해 최적화된 구조를 분석 및 검증하여 3단 파이프라인 구조로 설계하였으며, Nyquist 입력에서도 14 비트 수준의 유효비트 수를 가지는 광대역 저잡음 SHA 회로를 기반으로 하고, MDAC에 사용되는 커패시터의 소자 부정합에 의한 영향을 최소화하기 위하여 3차원 완전 대칭 구조를 갖는 레이아웃 기법을 적용하였다. 또한, 100MS/s의 동작 속도에서 6 비트의 해상도와 소면적을 필요로 하는 최종단의 flash ADC는 오픈 루프 오프셋 샘플링 및 인터폴레이션 기법을 사용하였다. 제안하는 시제품 ADC는 SMIC 0.18um CMOS 공정으로 제작되었으며, 측정된 DNL과 INL은 14비트 해상도에서 각각 1.03LSB, 5.47LSB 수준을 보이며, 100MS/s의 샘플링 속도에서 SNDR 및 SFDR이 각각 59dB, 72dB의 동적 성능을 보여준다. 시제품 ADC의 칩 면적은 $3.4mm^2$이며 소모 전력은 1.8V 전원전압에서 145mW이다.

자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가 (Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving)

  • 조문기;배경율
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.191-207
    • /
    • 2021
  • 오늘날 이동통신은 급증하는 데이터 수요에 대응하기 위해서 주로 속도 향상에 초점을 맞추어 발전해 왔다. 그리고 5G 시대가 시작되면서 IoT, V2X, 로봇, 인공지능, 증강 가상현실, 스마트시티 등을 비롯하여 다양한 서비스를 고객들에게 제공하기위한 노력들이 진행되고 있고 이는 우리의 삶의 터전과 산업 전반에 대한 환경을 바꿀 것으로 예상되고 되고 있다. 이러한 서비스를 제공하기위해서 고속 데이터 속도 외에도, 실시간 서비스를 위한 지연 감소 그리고 신뢰도 등이 매우 중요한데 5G에서는 최대 속도 20Gbps, 지연 1ms, 연결 기기 106/㎢를 제공함으로써 서비스 제공할 수 있는 기반을 마련하였다. 하지만 5G는 고주파 대역인 3.5Ghz, 28Ghz의 높은 주파수를 사용함으로써 높은 직진성의 빠른 속도를 제공할 수 있으나, 짧은 파장을 가지고 있어 도달할 수 있는 거리가 짧고, 회절 각도가 작아서 건물 등을 투과하지 못해 실내 이용에서 제약이 따른다. 따라서 기존의 통신망으로 이러한 제약을 벗어나기가 어렵고, 기반 구조인 중앙 집중식 SDN 또한 많은 노드와의 통신으로 인해 처리 능력에 과도한 부하가 발생하기 때문에 지연에 민감한 서비스 제공에 어려움이 있다. 그래서 자율 주행 중 긴급 상황이 발생할 경우 사용 가능한 지연 관련 트리 구조의 제어 기능이 필요하다. 이러한 시나리오에서 차량 내 정보를 처리하는 네트워크 아키텍처는 지연의 주요 변수이다. 일반적인 중앙 집중 구조의 SDN에서는 원하는 지연 수준을 충족하기가 어렵기 때문에 정보 처리를 위한 SDN의 최적 크기에 대한 연구가 이루어져야 한다. 그러므로 SDN이 일정 규모로 분리하여 새로운 형태의 망을 구성 해야하며 이러한 새로운 형태의 망 구조는 동적으로 변하는 트래픽에 효율적으로 대응하고 높은 품질의 유연성 있는 서비스를 제공할 수 있다. 이러한 SDN 구조 망에서 정보의 변경 주기, RTD(Round Trip Delay), SDN의 데이터 처리 시간은 지연과 매우 밀접한 상관관계를 가진다. 이 중 RDT는 속도는 충분하고 지연은 1ms 이하이기에 유의미한 영향을 주는 요인은 아니지만 정보 변경 주기와 SDN의 데이터 처리 시간은 지연에 크게 영향을 주는 요인이다. 특히, 5G의 다양한 응용분야 중에서 지연과 신뢰도가 가장 중요한 분야인 지능형 교통 시스템과 연계된 자율주행 환경의 응급상황에서는 정보 전송은 매우 짧은 시간 안에 전송 및 처리돼야 하는 상황이기때문에 지연이라는 요인이 매우 민감하게 작용하는 조건의 대표적인 사례라고 볼 수 있다. 본 논문에서는 자율 주행 시 응급상황에서 SDN 아키텍처를 연구하고, 정보 흐름(셀 반경, 차량의 속도 및 SDN의 데이터 처리 시간의 변화)에 따라 차량이 관련정보를 요청해야 할 셀 계층과의 상관관계에 대하여 시뮬레이션을 통하여 분석을 진행하였다.