• Title/Summary/Keyword: 2ch

Search Result 4,538, Processing Time 0.038 seconds

Proton Transfer Reactions and Ion-Molecule Reactions of Ionized XCH2CH2Y (X and Y = OH or NH2)

  • Choi, Sung-Seen;So, Hun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.539-544
    • /
    • 2006
  • Proton transfer reactions and ion-molecule reactions of bifunctional ethanes of $H_2NCH_2CH_2NH_2$, $H_2NCH_2CH_2OH$, and $HOCH_2CH_2OH$ were studied using Fourier transform mass spectrometry (FTMS). The rate constants for proton transfer reactions between the fragment ions and neutral molecules were obtained from the temporal variation of the ion abundances. The rate constants were consistent with the heats of reaction. The fastest proton transfer reactions were the reactions of $CH_2N^+$, $CHO^+$, and $CH_3O^+$ for $H_2NCH_2CH_2NH_2$, $H_2NCH_2CH_2OH$, and $HOCH_2CH_2OH$, respectively. The $[M+13]^+$ ion was formed by the ion-molecule reaction between $H_2C=NH_2 ^+$ or $H_2C=OH^+$ and the neutral molecule. The major product ions generated from the ion-molecule reactions between the protonated molecule and neutral molecule were $[2M+H]^+$, $[M+27]^+$, and $[M+15]^+$.

Response Characteristics of Thick Film Sensors Using Nano ZnO:Ni for Hydrocarbon Gas (나노 ZnO:Ni를 이용한 후막 가스센서의 탄화수소계 가스에 대한 감응특성)

  • Yoon, So-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.211-214
    • /
    • 2013
  • The effects of a Ni coating on the sensing properties of nano ZnO:Ni based gas sensors were studied for $CH_4$ and $CH_3CH_2CH_3$ gases. Nano ZnO sensing materials were prepared by the hydrothermal reaction method. The Ni coatings on the nano ZnO surface were deposited by the hydrolysis of zinc chloride with $NH_4OH$. The weight % of Ni coating on the ZnO surface ranged from 0 to 10 %. The nano ZnO:Ni gas sensors were fabricated by a screen printing method on alumina substrates. The structural and morphological properties of the nano ZnO : Ni sensing materials were investigated by XRD, EDS, and SEM. The XRD patterns showed that nano ZnO : Ni powders with a wurtzite structure were grown with (1 0 0), (0 0 2), and (1 0 1) dominant peaks. The particle size of nano ZnO powders was about 250 nm. The sensitivity of nano ZnO:Ni based sensors for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas was measured at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity of the ZnO:Ni sensor to $CH_4$ gas and $CH_3CH_2CH_3$ gas was observed at Ni 4 wt%. The response and recovery times of 4 wt% Ni coated ZnO:Ni gas sensors were 14 s and 15 s, respectively.

Fabrication and Characteristics of $SnO_{2}/Al_{2}O_{3}/Pd$ Thick Film Devices for Detection of $CH_{3}CN$ Vapor ($CH_{3}CN$ 감지를 위한 $SnO_{2}/Al_{2}O_{3}/Pd$ 후막소자의 제조 및 그 특성)

  • Park, Hyo-Derk;Jo, Sung-Guk;Sohn, Jong-Rack;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 1992
  • The optimum base material was selected by the thermal decomposition temperature of $CH_{3}CN$ on the surface of various metal oxides, and the FT-IR analyses of its products. On the surface of $SnO_{2}$, $CH_{3}CN$ was initiated to decompose at $130^{\circ}C$ and produced a lot of products at $200^{\circ}C$. The products from the reaction were found to be $H_{2}O$, $NH_{3}$ and CO, but $N_{2}O$ has started to produce at $320^{\circ}C$. The sensing characteristics of $SnO_{2}$ sensor to $CH_{3}CN$ are influenced by the absorbed species which are produced by the oxidation reaction of $CH_{3}CN$ on the surface of metal oxide. The gaseous species produced from the surface of sensing material in the oxidation reaction were found to be CO, $NH_{3}$, $H_{2}O$ and $NO_{x}$ etc.. It was assumed that the amount of $NO_{x}$ play a great role to the determining sensing properties. In the condition of 170 ppm $CH_{3}CN$, the sensitivity and optimum operating temperature of $SnO_{2}$ were 70% and $300^{\circ}C$, respectively. In this research, the response time of $CH_{3}CN$ to $SnO_{2}/Al_{2}O_{3}/Pd$ sensor added with 0.2 wt % Pd was found about 10 sec and sensitivity was also found relatively high.

  • PDF

Synthesis, Structural Characterization and Thermal Behaviour of Block Copolymers of Aminopropyl-Terminated Polydimethylsiloxane and Polyamide Having Trichlorogermyl Pendant Group (Aminopropyl-Terminated Polydimethylsiloxane과 Trichlorogermyl 곁가지 그룹을 갖는 Polyamide 블록공중합체의 합성, 구조분석 및 열적거동)

  • Gill, Rohama;Mazhar, M.;Mahboob, Sumera;Siddiq, Muhammad
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.239-245
    • /
    • 2008
  • Block copolymers of the general formula $[(-CO-R'-CO-HN-Ar-NH-CO-R'-CO)_xNH(CH_2)_3-(Me_2SiO)_y(CH_2)_3NH_2]_n$, [n=18.00 to 1175.0] where $R'=CH_2CH(CH_2GeCl_3)$;$CH_2CHGeCl_3CH_2$; and $Ar=-C_6H_4$;$-(o.CH_3C_6H_4)_2$;$-o.CH_3OC_6H_4)_2$;$-(o.CH_3C_6H_4)$ were prepared by a polycondensation reaction of polyamide containing a pendant trichlorogermyl group and terminal acid chloride $Cl(-CO-R'-CO-NH-Ar-NH-CO-R'-CO-)_xCl$ with aminopropyl-terminated polydimethylsiloxane $H_2N(CH_2)_3(Me_2SiO)_y-(CH_2)_3NH_2]$, (PDMS). These polymers were characterized by elemental analysis, $T_g$, FT-IR, $^1H$-NMR, solid state $^{13}C$-NMR, and molecular weight determination. The thermal stability of these copolymers was examined using thermal analysis techniques, such as TGA and DSC. Their molecular weights as determined by laser light scattering technique ranged $5.13{\times}10^5$ to $331{\times}10^5\;g/mol$. These polymers display their $T_g$ in the range of 337 to $393^{\circ}C$ with an average decomposition temperature at $582^{\circ}C$.

Mechanistic Investigation of Redox Process of 2-Amino-1-cyclopentene-1-dithiocarboxylate derivatives (2-Amino-1-cyclopentene-1-dithiocarboxylate 유도체들의 전극 반응메카니즘)

  • Kim, Yeong Sin;Kim, U Seong;Sim, Yun Bo;Choe, Seong Rak
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.260-266
    • /
    • 1990
  • The electrochemical behavior of N-methyl-2-amino-l-cyclopentene-l-dithiocarboxylic acid $(N-CH_3 acdc) and 2-amino-l-cyclopentene-l-dithiomethyl ester (S-CH_3 acdc) in DMF have been investigated by the use of polarography, cyclic voltammetry and coulometry. The dimer of N-CH_3 acdc is further oxidized at +0.98 V via 2-electron process to produce free sulfur atom and cyclization product. The ring formation between two dithio group occurs along with the elimination of one sulfur atom. The elimination of sulfur atom occurs via two electron oxidation process at + 0.98 V vs. Ag/AgCl electrode. However, the cyclization does not occur in the S-CH_3$ acdc.

  • PDF

Regioselective Lithiation of $\alpha$-Methylpyridine Analogue and Its Trapping Reactions with $Me_2RSiCl(R = Me, tBuCH_2(Me_3Si)CH)$ ($\alpha$-Methylpyridine유도체의 국지 선택적 리튬화 반응과 $Me_2RSiCl(R = Me, tBuCH_2(Me_3Si)CH)$을 이용한 반응생성물의 확인반응)

  • Kim, Jeong Gyun;Park, Eun Mi;Son, Byeong Yeong
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.8
    • /
    • pp.570-575
    • /
    • 1994
  • The metallation of $\alpha$-methylpyridine 1(a∼f) with n-BuLi produced $\alpha-methylenylpyridinium$ salt 3(a∼f) by elimination of butane. The trapping reactions of 3(a∼f) with $Me_3SiCl\;and\;Me_2SiClCH(SiMe_3)CH_2tBu$ produced only 4(a∼f) and 5(a∼f). The $\alpha$-hydrogen atom of silylated methylene group in 4(a∼f) is more reactive than unreacted $CH_3$ of 4(a∼f) itself and 1(a∼f) toward n-BuLi at low temperature in pentane medium.

  • PDF

Pyrolytic Reaction Pathway of Chloroethylene in Hydrogen Reaction Atmosphere (수소 반응분위기에서 Chloroethylene 열분해 반응경로 특성)

  • Won, Yang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.510-515
    • /
    • 2011
  • The pyrolytic reaction of 1,1-dichloroethylene($CH_2CCl_2$) has been conducted to investigate thermal decomposition of chlorocarbon and product formation pathways under hydrogen reaction environment. The reactions were studied in a isothermal tubular flow reactor at 1 atm total pressure in the temperature range $650{\sim}900^{\circ}C$ with reaction times of 0.3~2.0 sec. A constant feed molar ratio $CH_2CCl_2:H_2$ of 4:96 was maintained through the whole experiments. Complete decay(99%) of the parent reagent, $CH_2CCl_2$ was observed at temperature near $825^{\circ}C$ with 1 sec. reaction time. The important decay of $CH_2CCl_2$ under hydrogen reaction environment resulted from H atom cyclic chain reaction by abstraction and addition displacement. The highest concentration (28%) of $CH_2CHCl$ as the primary product was observed at temperature $700^{\circ}C$, where up to 46% decay of $CH_2CCl_2$ was occurred. The secondary product, $C_2H_4$ as main product was detected at temperature above $775^{\circ}C$. The one less chlorinated ethylene than parent increase with temperature rise subsequently. The HCl and dechlorinated hydrocarbons such as $C_2H_4$, $C_2H_6$, $CH_4$ and $C_2H_2$ were the main products observed at above $825^{\circ}C$. The important decay of $CH_2CCl_2$ resulted from H atom cyclic chain reaction by abstraction and addition displacement. The important pyrolytic reaction pathways to describe the features of reagent decay and intermediate product distributions, based upon thermochemical and kinetic principles, were suggested.

Research on the Methane Recovery from Landfill Gas by Applying Nitrogen Gas Separator Membrane (질소 분리용 막을 이용한 매립가스내 메탄 회수 연구)

  • Chun, Seung-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.586-591
    • /
    • 2013
  • This experiment was performed to enhance $CH_4$ purity of landfill gas by applying gas separator membrane for purified nitrogen gas production. 1:6 area ratios of $1^{st}$ to $2^{nd}$ membrane module was suitable for $CH_4$ recovery. After separation membrane system was installed, 249 tries were performed. Average permeability for $CH_4$ was 28.4% and for $CO_2$ was 94.3%. This can explain nitrogen gas separator membrane can be applied to collect $CH_4$ from LFG. However, nitrogen permeability only reached up to 16.5%. Therefore, the final purified landfill gas concentration was rounded up to 69.7% for $CH_4$, 4.3% for $CO_2$ and 26.0% for $N_2$. For the high degree of $CH_4$ purity, $N_2$ should be kept at least under 2.0% by controlling air inflow to landfill.

Rational Design of Coordination Polymers with Flexible Oxyethylene Side Chains

  • Choi, Eun-Young;Gao, Chun-Ji;Lee, Suck-Hyun;Kwon, O-Pil
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1264-1267
    • /
    • 2012
  • We rationally designed and synthesized metallopolymers with organic 1,4-benzenedicarboxylic acid (BDC) linkers with different lengths of oxyethylene side chains in order to examine the influence of side chains on the coordination characteristics. While in a previous report the BDC linkers with alkyl side chains were found to form three-dimensional (3D) isoreticular metal-organic framework (IRMOF) structures or one-dimensional (1D) coordination polymeric structures with short $-O(CH_2)_6CH_3$ or long $-O(CH_2)_9CH_3$ side chains, respectively, new BDC linkers with oxyethylene side chains of the same lengths, $-(OCH_2CH_2)_2CH_3$ and $-(OCH_2CH_2)_3CH_3$, form only 3D IRMOF structures. This result is attributed to the higher flexibility and smaller volume of oxyethylene side chains compared to alkyl side chains.

Nucleophilic Substitutions at a Carbonyl Carbon Atom (ⅩⅡ). Solvolysis of Methylchloroformate and Its Thioanalogues in $CH_3CN-H_2O$ and $CH_3COCH_3-H_2$ Mixtures (카르보닐탄소원자의 친핵성 치환반응 (제 12 보).아세토니트릴-물 및 아세톤-물 혼합용 매속에서 메틸클로로훠메이트와 그 티오유도체들의 가용매분해반응에 관한 연구)

  • Sangmoo La;Kyeong Shin Koh;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 1980
  • Solvolysis rate constants for methylchloroformate, $CH_3O$(CO)Cl, methylthiono-chloroformate, $CH_3O$(CS)Cl, and methylthiolchloroformate, $CH_3S$(CO)Cl, have been determined conductometrically in acetone-water and acetonitrile-water mixtures, and activation parameters, ${\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$, have been derived. Results show that in water-rich regions the order of rate increases as $$CH_3O(CO)Cl while in dipolar aprotic solvent-rich region this order reverses. The plots of log k vs. solvent parameters, Y, $\frac{D-1}{2D+1}$ and log($H_2$) show that the order of rate increase in water-rich region is the results of increase in $S_N1$ character. It is concluded that $CH_3S$(CO)Cl solvolyzes via $S_N1$ mechanism whereas $CH_3O$(CO)Cl reacts via $S_N2$ and $CH_3O$(CS)Cl via intermediate mechanism in water-rich region.

  • PDF