Synthesis, Structural Characterization and Thermal Behaviour of Block Copolymers of Aminopropyl-Terminated Polydimethylsiloxane and Polyamide Having Trichlorogermyl Pendant Group

Aminopropyl-Terminated Polydimethylsiloxane과 Trichlorogermyl 곁가지 그룹을 갖는 Polyamide 블록공중합체의 합성, 구조분석 및 열적거동

  • Published : 2008.05.30

Abstract

Block copolymers of the general formula $[(-CO-R'-CO-HN-Ar-NH-CO-R'-CO)_xNH(CH_2)_3-(Me_2SiO)_y(CH_2)_3NH_2]_n$, [n=18.00 to 1175.0] where $R'=CH_2CH(CH_2GeCl_3)$;$CH_2CHGeCl_3CH_2$; and $Ar=-C_6H_4$;$-(o.CH_3C_6H_4)_2$;$-o.CH_3OC_6H_4)_2$;$-(o.CH_3C_6H_4)$ were prepared by a polycondensation reaction of polyamide containing a pendant trichlorogermyl group and terminal acid chloride $Cl(-CO-R'-CO-NH-Ar-NH-CO-R'-CO-)_xCl$ with aminopropyl-terminated polydimethylsiloxane $H_2N(CH_2)_3(Me_2SiO)_y-(CH_2)_3NH_2]$, (PDMS). These polymers were characterized by elemental analysis, $T_g$, FT-IR, $^1H$-NMR, solid state $^{13}C$-NMR, and molecular weight determination. The thermal stability of these copolymers was examined using thermal analysis techniques, such as TGA and DSC. Their molecular weights as determined by laser light scattering technique ranged $5.13{\times}10^5$ to $331{\times}10^5\;g/mol$. These polymers display their $T_g$ in the range of 337 to $393^{\circ}C$ with an average decomposition temperature at $582^{\circ}C$.

Keywords

References

  1. W. Lynch, Handbook of Silicone Rubber Fabrication, Van Nostrand Reinhold, New York, 1978
  2. R. Rudolph, J, Abraham, T. Vechoine, S. Guber, and M. Woodward, Plast. Reconstr. Surg., 62, 185 (1978) https://doi.org/10.1097/00006534-197808000-00006
  3. L. C. Hartman, R. W. Bessette, R. E. Baier, A. E. Meyer, and J. Wirth, J. Biomed. Mater. Res., 22, 475 (1988) https://doi.org/10.1002/jbm.820220604
  4. A. Noshay and J. E. McGrath, Block Copolymer, Overview and Critical Survey, Academic Press, New York, 1977
  5. S. B. Speck, J. Org. Chem., 18, 1689 (1953) https://doi.org/10.1021/jo50018a011
  6. J. A. Massey, K. Temple, L. Cao, Y. Rharbi, J. Raez, M. A. Winnik, and I. Manners, J. Am. Chem. Soc., 122, 11577 (2000) https://doi.org/10.1021/ja002205d
  7. E. C. Kang, T. Kaneko, D. Shino, and M Akashi, J. Polym. Sci., 41, 841 (2002)
  8. L. H. Tagle, F. R. Diaz, J. C. Vega, and V. P alenzuela, Eur. Polym. J., 39, 40 (2003)
  9. L. H. Tagle, F. R. Diaz, D. Radic, A. Opazo, and J. M. Espinoza, J. Inorg. Organomet. Polym., 10, 73 (2000) https://doi.org/10.1023/A:1009471808202
  10. C. A. Terraza, L. H. Tagle, and A. Leiva, Polym. Bull., 55, 277 (2005) https://doi.org/10.1007/s00289-005-0432-z
  11. T. J. Peckham, J. A. Massey, M. Edward, I. Manners, and D. A. Foucher, Macromol., 29, 2396 (1996) https://doi.org/10.1021/ma951408x
  12. H. Ito, T. Masuda, and T. Higashimura, J. Polym. Sci.; Part A: Polym. Chem., 34, 2925 (1996) https://doi.org/10.1002/(SICI)1099-0518(199610)34:14<2925::AID-POLA9>3.0.CO;2-P
  13. K. Mochida, S. Nagano, H. Kawata, M. Wakasa, and H. Hayashi, J. Organomet. Chem., 542, 75 (1997) https://doi.org/10.1016/S0022-328X(97)00287-8
  14. T. Kausar, M. Mazhar, M. Ahmed, Ubaid-ur-Rehman, and N. Hussain, Main Group Metal Chemistry, 25, 711 (2002)
  15. Imitiaz-ud-Din, K. C. Molloy, M. Mazhar, S. Ali, S. Dastgir, and M. F. Mahan, Appl. Organomet. Chem., 17, 781 (2003) https://doi.org/10.1002/aoc.504
  16. Imitiaz-ud-Din, M. Mazhar, K. M. Khan, M. F. Mahon, and K. C. Molloy, J. Organomet. Chem., 689, 899 (2004) https://doi.org/10.1016/j.jorganchem.2003.12.019
  17. G. Decher, Science, 277, 1232 (1997) https://doi.org/10.1126/science.277.5330.1232
  18. G. Schneider and G. Decher, Nano Letters, 4, 10, 1833 (2004) https://doi.org/10.1021/nl0490826
  19. D. D. Parrin and W. L. F. Armarego, Purification of Laboratory Chemicals, 3rd Ed., Butterworths, Heinemann Oxford, 1997
  20. V. F. Mironov and T. K. Gar, J. Organomet. Chem. Rev., 12, 365 (1989)
  21. R. M. Silverstein and F. X. Webster, Spectroscopic Identification of Organic Compound, John Wiley & Sons, 6th Ed., New York, 1998
  22. T. Kausar, M. Mazhar, G. B. Shah, M. Ali, and S. Ali, Main Group Metal Chemistry, 23, 351 (2000)
  23. M. Cazacu, A. Vlad, M. Marco, C. Racles, A. Airnei, and G. Munteanu, Macromolecules, 39, 3786 (2006) https://doi.org/10.1021/ma052030y
  24. L. H. Tagle, C. Terraza, P. Valenzuela, A. Leiva, and M. Urzua, Thermochim. Acta, 425, 115 (2005) https://doi.org/10.1016/j.tca.2004.06.008
  25. R. J. Young, Introduction to Polymers, Chapman and Hall Ltd., New York, 1981
  26. S. H. Hsiao and T. L. Huang, Polym. J., 34, 225 (2002) https://doi.org/10.1295/polymj.34.225
  27. J. Zimmerman, "Polyamides", in Encyclopedia of Polymer Science & Engineering, Wiley Interscience, New York, Vol. 11, p 340 (1988)
  28. N. Grassie and I. G. Macfarlane, Eur. Polym. J., 14, 875 (1978) https://doi.org/10.1016/0014-3057(78)90084-8
  29. J. Preston, J. Polym. Sci. A-1, 4, 529 (1966) https://doi.org/10.1002/pol.1966.150040307
  30. F. Dobinson and J. Preston, J. Polym. Sci., A-1, 4, 2093 (1966) https://doi.org/10.1002/pol.1966.150040906
  31. J. Preston and W. B. Black, J. Polym. Sci., C, 19, 7 (1967)
  32. M. Mazhar, M. Zulifiqar, A. Piracha, S. Ali, and A. Ahmed, J. Chem. Soc. Pak., 12, 225 (1990)
  33. T. H. Thomas and T. C. Kendrick, J. Polym. Sci., A-2, 7, 537 (1969) https://doi.org/10.1002/pol.1969.160070308
  34. R. T. Conley, Thermal Stability of Polymers, Marcel Dekker, Inc., New York, 1970
  35. H. H. Horowitz and G. Metzger, J. Anal. Chem., 35, 1464 (1963) https://doi.org/10.1021/ac60203a013