• 제목/요약/키워드: 2D-QSAR & HQSAR analysis

검색결과 11건 처리시간 0.022초

새로운 O,O-dialkyl-1-phenoxyacetoxy-1-methylphosphonate 유도체들의 반응성과 제초활성에 관한 2D-QSAR 및 HQSAR 분석 (2D-QSAR and HQSAR Analysis on the Herbicidal Activity and Reactivity of New O,O-dialkyl-1-phenoxy-acetoxy-1-methylphosphonate Analogues)

  • 성낙도;장석찬;황태연
    • 농약과학회지
    • /
    • 제11권2호
    • /
    • pp.72-81
    • /
    • 2007
  • 일련의 새로운 O,O-dialkyl-1-phenoxyacetoxy-1-methylphosphonate (S) 유도체들의 반응성과 치환기가 변화함에 따른 오이(Cucumus Sativa)씨에 대한 발아전 제초활성과의 관계를 2D-QSAR 및 HQSAR 방법으로 검토하였다. 통계적으로 HQSAR 모델이 2D-QSAR 모델보다 양호하였으며 기질분자(S)와 PDH 효소중 $BH^+$ 이온(I) 사이의 경계분자궤도(FMO) 상호작용은 친전자성 반응이 우세하였다. 치환기의 효과로부터 기질분자 (S)내 $R_2$-치환기는 carbonyl 산소원자에 대한 친전자성 반응을, 그리고 phenyl 고리상 X,Y-치환기는 carbonyl 탄소원자에 대한 친핵성 반응에 기여하였으며 $R_2$-치환기보다 X,Y-치환기의 영향이 더 컸다. 2D-QSAR모델 (I 및 II)과 HQSAR 모델의 기여도로부터 X,Y-치환기의 길이가 길수록 제초활성이 증가하는 경향이었으며 적정한 ${\epsilon}LUMO$ 에너지($({\epsilon}LUMO)_{opt.}$=-0.479 e.v.)가 제초활성에 중요한 요소이었다. 그러므로 PDH 효소의 저해활성으로 인한 제초활성은 친핵성반응으로 진행될 것으로 예상되었다. 2D-QSAR 및 HQSAR 두 모델로부터 제초활성에 기여하는 기질분자(S)의 구조 특이성과 요소들을 새로운 제초제 설계에 적용할 수 있음을 시사하였다.

새로운 Cyclohexanedione계 유도체의 제초활성에 관한 2D-QSAR 및 HQSAR 분석 (2D-QSAR and HQSAR Analysis on the Herbicidal Activity of New Cyclohexanedione Derivatives)

  • 김용철;황태연;성낙도
    • 농약과학회지
    • /
    • 제12권1호
    • /
    • pp.9-17
    • /
    • 2008
  • 일련의 새로운 cyclohexanone 유도체(5-benzofuryl-2-[1-(alkoxyimino)alkyl]-3-hy-droxycyclohex-2-en-1-ones)와 벼(Oryza sativa L.) 및 돌피(Echinochloa crus-galli)에 대한 제초활성과의 정량적인 구조-활성관계(QSARs)를 2D-QSAR 및 HQSAR 방법으로 검토하였다. 일반적으로 HQSAR 모델이 2D-QSAR 모델보다 예측성과 적합성이 좋았다. 2D-QSAR II 모델로부터 돌피의 제초활성은 분자의 Balaban 지수(BI)와 $R_1$$R_3$-기의 소수성에 의존적이었다. 또한, HQSAR IV 모델에 따라 $R_3=ethyl$ 기가 벼의 제초활성에 기여하는 반면에 5-(cyclohex-3-enyl)-2,3-dihydrobenzofuran 고리 부분은 두 초종의 제초활성에 기여하지 않았다.

Holographic Quantitative Structure-Activity Relationship (HQSAR) Study of 3,4-Dihydroxychalcone Derivatives as 5-Lipoxygenase Inhibitors

  • Gadhe, Changdev G.
    • 통합자연과학논문집
    • /
    • 제4권3호
    • /
    • pp.210-215
    • /
    • 2011
  • Holographic quantitative structure-activity relationships (HQSAR) is a useful tool to correlates structures with their biological activities. HQSAR is a two dimensional (2D) QSAR methodology, which generates QSAR equations through 2D fingerprint and correlates it with biological activity. Here, we report a 2D-QSAR model for a series of fifty-one 3,4-dihydroxychalcones derivatives utilizing HQSAR methodology. We developed HQSAR model with 6 optimum numbers of components (ONC), which resulted in cross-validated correlation coefficient ($q^2$) of 0.855 with 0.283 standard error of estimate (SEE). The non-cross-validated correlation coefficient (r2) with 0.966 indicates the model is predictive enough for analysis. Developed HQSAR model was binned in to a hologram length of 257. Atomic contribution map revealed the importance of dihydroxy substitution on phenyl ring.

QSAR Studies on the Inhibitory Activity of New Methoxyacrylate Analogues against Magnaporthe grisea (Rice Blast Disease)

  • Song, Young-Seob;Sung, Nack-Do;Yu, Yong-Man;Kim, Bum-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권10호
    • /
    • pp.1513-1520
    • /
    • 2004
  • We investigate a series of synthesized ${\beta}$-methoxyacrylate analogues for their 3D QSAR & HQSAR against Magnaporthe grisea (Rice Blast Disease). We perform the three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) studies, using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) procedure. In addition, we carry out a two-dimensional Quantitative Structure-Activity Relationship (2D-QSAR) study, using the Hologram QSAR (HQSAR). We perform these studies, using 53 compounds as a training set and 10 compounds as a test set. The predictive QSAR models have conventional $r^2$ values of 0.955 at CoMFA, 0.917 at CoMSIA, and 0.910 at HQSAR respectively; similarly, we obtain cross-validated coefficient $q^2$ values of 0.822 at CoMFA, 0.763 at CoMSIA, and 0.816 at HQSAR, respectively. From these studies, the CoMFA model performs better than the CoMSIA model.

2D-QSAR and HQSAR on the Inhibition Activity of Protein Tyrosine Phosphatase 1B with Oleanolic Acid Analogues

  • Chung, Young-Ho;Jang, Seok-Chan;Kim, Sang-Jin;Sung, Nack-Do
    • Journal of Applied Biological Chemistry
    • /
    • 제50권2호
    • /
    • pp.52-57
    • /
    • 2007
  • Quantitative structure-activity relationships (QSARs) on the inhibition activities by oleanolic acid analogues (1-19) as a potent inhibitor against protein tyrosine phosphatase-1B were studied quantitatively using 2D-QSAR and HQSAR methodologies. The inhibition activity was dependent on the variations of $R_{4-}$substituent, and as shown in 2D-QSAR model ($r^2=0.928$), it has a tendency to increase as the negative Randic Indice (RI) goes up. The size of the molecular fragments used in HQSAR varied from five to eight. The fragment distinctions had the best statistic value, whose predictability is $q^2=0.785$ and correlation coefficient is $r^2=0.970$, on condition of connections. From the atomic contribution maps, the factor that contributes to the inhibition activities is the $C_{15}{\sim}C_{17}$ bond in the D ring. From the analysis result of these two the models, the structural distinctions and descriptors that contribute to the inhibition activities were obtained.

Hologram and Receptor-Guided 3D QSAR Analysis of Anilinobipyridine JNK3 Inhibitors

  • Chung, Jae-Yoon;Cho, Art-E;Hah, Jung-Mi
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2739-2748
    • /
    • 2009
  • Hologram and three dimensional quantitative structure activity relationship (3D QSAR) studies for a series of anilinobipyridine JNK3 inhibitors were performed using various alignment-based comparative molecular field analysis (COMFA) and comparative molecular similarity indices analysis (CoMSIA). The in vitro JNK3 inhibitory activity exhibited a strong correlation with steric and electrostatic factors of the molecules. Using four different types of alignments, the best model was selected based on the statistical significance of CoMFA ($q_2\;=\;0.728,\;r_2\;=\;0.865$), CoMSIA ($q_2\;=\;0.706,\;r_2\;=\;0.960$) and Hologram QSAR (HQSAR: $q_2\;=\;0.838,\;r_2\;=\;0.935$). The graphical analysis of produced CoMFA and CoMSIA contour maps in the active site indicated that steric and electrostatic interactions with key residues are crucial for potency and selectivity of JNK3 inhibitors. The HQSAR analysis showed a similar qualitative conclusion. We believe these findings could be utilized for further development of more potent and selective JNK3 inhibitors.

PARP-1 억제제의 Docking 및 QSAR 연구 (Docking and QSAR studies of PARP-1 Inhibitors)

  • Kim, Hye-Jung;Cho, Seung-Joo
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.210-218
    • /
    • 2004
  • Poly(ADP-ribose)polymerase-1 (PARP-1) is a nuclear enzyme involved in various physical functions related to genomic repair, and PARP inhibitors have therapeutic application in a variety of neurological diseases. Docking and the QSAR (quantitative structure-activity relationships) studies for 52 PARP-1 inhibitors were conducted using FlexX algorithm, comparative molecular field analysis (CoMFA), and hologram quantitative structure-activity relationship analysis (HQSAR). The resultant FlexX model showed a reasonable correlation (r$^{2}$ = 0.701) between predicted activity and observed activity. Partial least squares analysis produced statistically significant models with q$^{2}$ values of 0.795 (SDEP=0.690, r$^{2}$=0.940, s=0.367) and 0.796 (SDEP=0.678, r$^{2}$ = 0.919, s=0.427) for CoMFA and HQSAR, respectively. The models for the entire inhibitor set were validated by prediction test and scrambling in both QSAR methods. In this work, combination of docking, CoMFA with 3D descriptors and HQSAR based on molecular fragments provided an improved understanding in the interaction between the inhibitors and the PARP. This can be utilized for virtual screening to design novel PARP-1 inhibitors.

  • PDF

Ligand Based CoMFA, CoMSIA and HQSAR Analysis of CCR5 Antagonists

  • Gadhe, Changdev G.;Lee, Sung-Haeng;Madhavan, Thirumurthy;Kothandan, Gugan;Choi, Du-Bok;Cho, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2761-2770
    • /
    • 2010
  • In this study, we have developed QSAR models for a series of 38 piperidine-4-carboxamide CCR5 antagonists using CoMFA, CoMSIA and HQSAR methods. Developed models showed good statistics in terms of $q^2$ and $r^2$ values. Best predictions obtained with standard CoMFA model ($r^2$ = 0.888, $q^2$ = 0.651) and combined CoMSIA model ($r^2$ = 0.892, $q^2$ = 0.665) with electrostatics and H-bond acceptor parameter. The validity of developed models was assessed by test set of 9 compounds, which showed good predictive correlation coefficient for CoMFA (0.804) and CoMSIA (0.844). Bootstrapped analysis showed statistically significant and robust CoMFA (0.968) and CoMSIA (0.936) models. Best HQSAR model was obtained with a $q^2$ of 0.662 and $r^2$ of 0.936 using atom, connection, hydrogen, donor and acceptor as parameters and fragment size (7-10) with optimum number of 6 components. Predictive power of developed HQSAR model was proved by test set and it was found to be 0.728.

Ligand Based HQSAR Analysis of CRTh2 Antagonists

  • Babu, Sathya;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제8권1호
    • /
    • pp.1-12
    • /
    • 2015
  • CRTh2 receptor is an important mediator of the inflammatory effects and act as beneficial target for the treatment of asthma, COPD, allergic rhinitis and atopic dermatitis. In the present work, Hologram QSAR studies were conducted on a series of 50 training set CRTh2 antagonists (2-(2-(benzylthio)-1H-benzo[d]imidazol-1-yl acetic acids). The best HQSAR model was obtained using atoms, bonds, connections and donor/acceptor as fragment distinction parameter using hologram length 257 and 6 components with fragment size of minimum 7 and maximum 10. Significant cross-validated correlation coefficient ($q^2=0.786$) and non cross-validated correlation coefficients ($r^2=0.954$) were obtained. The model was then used to evaluate the 15 external test compounds which are not included in the training set and the predicted values were in good agreement with the experimental results ($r^2_{pred}=0.739$). Contribution map show that presence of C ring and its substituents makes big contributions for activities. The HQSAR model and analysis from the contribution map could be useful for further design of novel structurally related CRTh2 antagonists.

Hologram Quantitative Structure-Activity Relationships Study of N-Phenyl-N'-{4-(4-quinolyloxy)phenyl} Urea Derivatives as VEGFR-2 Tyrosine Kinase Inhibitors

  • Keretsu, Seketoulie;Balasubramanian, Pavithra K.;Bhujbal, Swapnil P.;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제10권3호
    • /
    • pp.141-147
    • /
    • 2017
  • Vascular endothelial growth factor (VEGF) is an important signaling protein involved in angiogenesis, which is the formation of new blood vessels from pre-existing vessels. Consequently, blocking of the vascular endothelial growth factor receptor (VEGFR-2) by small molecule inhibitors leads to the inhibition of cancer induced angiogenesis. In this study, we performed a two dimensional quantitative structure activity relationship (2D-QSAR) study of 38 N-Phenyl-N'-{4-(4-quinolyloxy) phenyl} urea derivatives as VEGFR-2 inhibitors based on hologram quantitative structure-activity (HQSAR). The model developed showed reasonable $q^2=0.521$ and $r^2=0.932$ values indicating good predictive ability and reliability. The atomic contribution map analysis of most active compound (compound 7) indicates that hydrogen and oxygen atoms in the side chain of ring A and oxygen atom in side chain of ring C contributes positively to the activity of the compounds. The HQSAR model developed and the atomic contribution map can serve as a guideline in designing new compounds for VEGFR-2 inhibition.