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Hologram and three dimensional quantitative structure activity relationship (3D QSAR) studies for a series of 
anilinobipyridine JNK3 inhibitors were performed using various alignment-based comparative molecular field 
analysis (COMFA) and comparative molecular similarity indices analysis (CoMSIA). The in vitro JNK3 inhibitory 
activity exhibited a strong correlation with steric and electrostatic factors of the molecules. Using four different 
types of alignments, the best model was selected based on the statistical significance of CoMFA (q2 = 0.728, r2 = 0.865), 
CoMSIA (q2 = 0.706, r2 = 0.960) and Hologram QSAR (HQSAR: q2 = 0.838, r2 = 0.935). The graphical analysis of pro
duced CoMFA and CoMSIA contour maps in the active site indicated that steric and electrostatic interactions with 
key residues are crucial for potency and selectivity of JNK3 inhibitors. The HQSAR analysis showed a similar 
qualitative conclusion. We believe these findings could be utilized for further development of more potent and 
selective JNK3 inhibitors.
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Introduction

c-Jun N-terminal Kinase (JNK) is a member of the mitogen- 
activated protein kinase (MAPK) family and functionally are 
a family of serine/threonine protein kinases.1 Activation of 
JNKs is associated with complex receptor-mediated signaling 
mechanisms, which are induced by various extracellular stimuli 
such as cytokines, mitogens, osmotic stress and UV irradiation.2 
The activated JNKs then phosphorylate a number of substrate 
proteins such as c-Jun, ATF-2, APP, Elk-1, Tau, NFAT-4 for 
activation.2

At least ten different JNK isoforms derived from three genes 
(JNK1, JNK2, and JNK3) have been identified in mammalian 
cells.3 While JNKs 1 and 2 are widely expressed in variety of 
tissues, JNK3 exhibit predominant localization in the brain 
and at lower levels in the heart and testis.3-4 In the human CNS, 
the major JNK isoforms expressed are JNK3a1 and JNK1a1.5 
There is a growing number of evidences implicating JNK3, 
the neuronal specific isoform, is involved in various apoptotic 
neuronal cell death. It appears to play important roles in the 
brain to mediate neurodegeneration, such as Ab processing, 
Tau phosphorylation, and neuronal apoptosis in Alzheimer's 
Disease, as well as the mediation of neurotoxicity in a rodent 
model of Parkinson's Disease.2 Therefore, identifying JNK3 
selective inhibitor may contribute towards neuroprotection 
therapies with reduced side effect risks, and will aid in further 
understanding of the roles of individual JNK kinases.

In the last few years, various JNK3 inhibitors have been 
investigated. Highly potent and specific inhibitors, 2'-anilino- 
4,4'-bipyridine derivatives, of c-Jun N-terminal kinase-3 acti
vity were reported by Swahn et al. in 2006.6 The scaffold of 2'- 
anilino-4,4'-bipyridine derivatives and their inhibitory potency 
toward JNK3 are shown in Table 1. Using one of the deriva

tives, Swahn et al. solved one crystal structure of JNK3-inhibitor 
complex (PDB code 2EXC). This complex structure offers a lot 
of important structural information in the active site and this 
can be used to understand the essential structural features for 
JNK3 inhibition and more importantly, to guide the design of 
better inhibitors.

Figure 1 shows the inhibitor, 14 (Table 1) within the active 
site of the complex structure (2EXC) and the analyzed struc
tural features are as follows: 1) the H-bond interaction between 
amino pyridine of 14 and the backbone of Met149 residue in 
the hinge region (Met146 〜 Asp150), which is common for 
most potent protein kinase inhibitors;7-8 2) the hydrophobic 
interaction between R1 and Met146 residue (gatekeeper); 3)

Figune 1. 2D view of interaction JNK3 active site and compound 14 
(PDB: 2EXC).
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the H-bond interaction between R2 and Glu155. In particular, 
the Met146 and Glu155 residues are unique to JNK3 compared 
with other similar kinases such as p38 and ERK2 (Thr106 and 
Asn115 in p38 and Gln105 in ERK2 are unique to their respec
tive proteins) and they seem to contribute to JNK3 ’s selectivity 
over other kinases.9

The three-dimensional quantitative structure activity rela
tionship (3D-QSAR) methods used here are comparative mole
cular field analysis (CoMFA), and comparative molecular 
similarity indices analysis (CoMSIA).10-13 Following two 3D- 
QSAR analyses, hologram QSAR (HQSAR) method was also 
performed.14 While HQSAR does not require molecular align
ment, CoMFA and CoMSIA methods are significantly in
fluenced by the alignment of input compounds. In order to 
develop reasonable models from CoMFA and CoMSIA, four 
different alignments were applied. They are ligand-based align
ment using quantum mechanics (QM), pharmacophore-based 
alignment, and two receptor-guided alignments (docking-based 
and MC searching & EM based).

Maleii시s and Computational Methods

Inhibitor data set. In the set of 24 2’-anilino-4,4’-bipyridine 
derivatives, compounds without clear IC50 value were omitted 
to derive QSAR models. The pIC50 values were used as the 
dependent variable in QSAR models. The total of 24 compounds 
was divided into the training set and the test set. 20 compounds 
were selected as the training set to generate QSAR models. 
The selection of the training and test sets was done manually 
such that low, moderate, and high JNK inhibitory activities 
were all represented. The structures and their activity values 
are listed in Table 1.

Preparation of ligands and receptor: The complex structure 
of 14 and JNK3 protein was obtained from the protein data 
bank (PDB code 2EXC) and prepared for receptor-guided 
alignment using Protein Preparation Wizard of Schrodinger 
maestro program.15 All water molecules were removed from 
the structure and 14 was selected as a template because 14 can 
supply reasonable bioactive conformation of the scaffold. The 
3D structures of other compounds were constructed based on 
the template using Schrodinger LigPrep program with the 
force field, OPLS 2005.16

CoMFA, CoMSIA, and HQSAR. In deriving CoMFA des
criptor, all compounds should be aligned in a certain 3D cubic 
lattice with grid spacing of 1.0, 1.5, and 2.0 A. The steric (Len- 
nard-Jones 6-12 potential) and electrostatic (Coulombic poten
tial) field energies were calculated by CoMFA descriptors 
using default options. CoMSIA also works with aligned com
pounds in the same lattice model of CoMFA. In CoMSIA, simil
arity indices for compound’s atoms in each grid point were 
calculated and physicochemical properties (steric, electrostatic, 
hydrophobic, hydrogen bond donor and acceptor) were eva
luated. HQSAR methodology requires two-dimensional struc
tures of input compounds and their activity values in order to 
derive compound's holograms and HQSAR model.14 HQSAR 
model is derived from hologram arrays of input compounds and 
their biological activity values by partial least square (PLS). 
The best HQSAR model can be produced with optimal fragment

(c) Docking-based(a) Ligand- (b) Pharmacophore
based using QM based

(d) MC searching & EM based

Figure 2. Different alignment results.

size and hologram length from the stored PLS processes.
PLS. Partial least squares (PLS) methodology for cyclic 

cross-validation with leave-one-out (LOO) method is used to 
derive QSAR models.17-18 The descriptors of CoMFA, CoMSIA, 
and HQSAR were used as independent variables, and pIC50 

activity values used as dependent variables. The number of 
independent variables by those QSAR descriptors is usually 
much larger than that of dependent variables which are com
pounds with pIC50 in data set. PLS can solve those equations 
and generate QSAR models. Cross-validation procedure evalu
ates the quality of generated QSAR model. The cross-validation 
analysis is performed using the leave-one-out (LOO) method.

Ligand-based alignment. The structures of all compounds 
except 14 were fully optimized based on density functional 
theory (DFT B3YLP/6-31G**) calculation. The thermal cor
rection with QM methods can be incorporated into ground 
state energy by vibration frequency analysis. We used Schro
dinger Jaguar program to carry out QM calculations in gas 
phase and thermal correction at 310 K.19 Then, the optimized 
compounds were aligned over the scaffold of 14. Figure 2(a) 
shows the ligand-based alignment using QM.

Pharmacophore-based alignment. Schrodinger Phase pro
gram was used to develop common pharmacophore hypothesis 
and to align all compounds based on it.20 Using ConfGen in 
Schrodinger package, 619 of various conformers for all com
pounds except 14 were generated with distance dependant 
dielectric solvation treatment and OPLS-2005 force field.21 
Those pharmacophore features are hydrogen bond acceptor 
(A), hydrogen bond donor (D), hydrophobic group (H), nega
tively charged group (N), positively charged group (P), and 
aromatic ring (R). They were mapped for each compound using 
a set of the pharmacophore features. Compounds such that
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Table 1. The strcutres and observed JNK3 inhibitory activities

No

1

2

3

4

5

6

7

8

9

10

11

12

R1 R2

4-F

2-F

IC50 (M) pIC50 No R1 R2 IC50 (M) pIC50

Bn 0.030 x 10-6 7.523 13

4-F 0.017 x 10-6 7.770 14

2-F 0.032 x 10-6 7.495 15 *

2-NH3 2-NH3 0.108 x 10-6 6.967 16

* 2-CH3 2-CH3 0.652 x 10-6 6.186 17

2-OCH3 2-OCH3 0.528 x 10-6 6.277 18

2-OCH2CH3 2-OCH2CH3 0.693 x 10-6 6.159 19

O，” C〉一och, 0.032 x 10-6 7.495 20

0.020 x 10-6 7.699 21 *

-弋丄 0.033 x 10-6 7.481 22

*
-"

0.044 x 10-6 7.357 23

-片 0.175 x 10-6 6.757 24

0.018 x 10-6 7.745

4-F $，”^»，och3 0.015 x 10-6 7.824

4-F 3'OocHb 0.235 x 10-6 6.629

0.009 x 10-6 8.046

0.207 x 10-6 6.684

4-F

4-F

4-F

4-F

0.005 x 10-6 8.301

0.010 x 10-6 8.000

O

‘、、o 
O

O
，、』、,\

O
싀'

O

,O

0.007 x 10-6 8.155

0.003 x 10-6 8.523

0.009 x 10-6 8.046

0.008 x 10-6 8.097

4-F 0.006 x 10-6 8.222

*Test set compounds
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PIC50 values are more than 8 were selected as active compounds 
except test set for producing the pharmacophore hypotheses. 
ADHRR pharmacophore features were selected as the common 
pharmacophore hypothesis (CPH). The PLS analyses carried 
out using Phase produced pharmacophore-based models using 
grid spacing of 1 A with training set. The best statistics pharma
cophore model was selected for the alignment of all compounds 
except 14. Figure 2(b) shows the pharmacophore-based align
ment.

Molecular docking and docking-based alignment. Glide doc
king program in Schrodinger package was used to predict rea
sonable binding poses of input compounds within the active 
site.22 The default Glide parameters were used except the con
straint option of H-bond interaction with Met149 (hinge). Doc
king performance was tested through redocking of the 14 
separated from the complex structure (2EXC) into the prepared 
JNK3 protein. The redocked binding poses of 14 were quite 
similar to its original geometry. RMSD values (heavy atoms) 
were between 0.376 〜1.694 A (average RMSD: 1.046 A, me
dian RMSD: 1.087 A). The grid spacing of CoMFA was as
signed between 1.0 〜 2.0 A, therefore an average RMSD value 
close to 1.0 A should be small enough for CoMFA analysis. Be
cause the redocking test was successful, docking poses of other 
compounds could be accepted as plausible bioactive confor
mations in the docking-based alignment. Top-ranked Glide 
docking pose for each compound was chosen as the result from 
docking-based alignment. Figure 2 (c) shows the docking-based 
alignment.

Monte Cado (MC) searching & Energy Minimization (EM) 
based alignment. Receptor-guided alignment using docking 
method is very effective for a large data set which has more 

than 100 compounds because docking programs can automa
tically select reasonable bioactive conformations among a huge 
number of possible binding poses. In a small data set, it is 
possible to generate more bioactive conformations manually 
for each compound using modeling tools than using automated 
docking programs. Especially when the structural similarity 
between the co-crystallized compound and other compounds 
is quite high, the scaffold which input compounds share can 
be replaced by that of co-crystallized compound. MC searching 
& EM based alignment modifies different substituents for 
each compound within the active site. First, the input com
pounds are superimposed based on the conformations of the 
common scaffold within the active site. After positioning input 
compounds in the active site, MC searching can determine 
possible conformations of substituents for each compound 
within the active site. MC searching method can find possible 
conformations of compounds which avoid steric hindrance in 
the active site. The conformations of input compounds found 
by MC searching method are slightly modified through energy 
minimization to find input compound's conformation with more 
stable binding energy. MacroModel program in Schrodinger 
package has MC searching and energy minimization methods.23 
Top-ranked binding pose by MacroModel was chosen for each 
compound.

According to the MC searching & EM based alignment pro
cedure, several plausible conformations of input compounds 
were found using Macromodel application based on the confor
mation of common scaffold in the 14. For each compound, 
conformation having most stable binding energy within the 
active site was selected. Figure 2 (d) shows the MC searching 
& EM based alignment within the active site. As one would

Table 2. Statistics of generated CoMFA models using different alignment methods

Model Grid spacing 
(A)

Leave-one-out 
cross-validation Non-cross-validation Bootstrap Predictive R2 Field contribution

2 
q n SDEP [2 SEE F-value r boot StdDev r pred Steric Electro

Alignment 1 (ligand-based alignment)
1 1.0 0.410 2 0.579 0.706 0.409 22.788 0.777 0.099 - 0.639 0.361
2 1.5 0.458 4 0.587 0.930 0.211 56.628 0.965 0.029 0.840 0.650 0.350
3 2.0 0.358 2 0.604 0.717 0.402 24.025 0.814 0.077 - 0.722 0.278

Alignment 2 (pharmacophore-based alignment)
4 1.0 0.385 2 0.587 0.785 0.347 31.015 0.847 0.034 0.572 0.428
5 1.5 0.387 3 0.604 0.836 0.312 27.176 0.899 0.052 0.555 0.445
6 2.0 0.323 2 0.616 0.798 0.336 33.630 0.807 0.090 0.623 0.377

Alignment 2 (docking-based alignment)
7 1.0 0.342 2 0.598 0.726 0.386 27.804 0.783 0.071 - 0.631 0.369
8 1.5 0.364 2 0.588 0.723 0.388 27.368 0.821 0.062 0.475 0.650 0.350
9 2.0 0.231 2 0.646 0.740 0.376 29.839 0.823 0.079 - 0.663 0.337

Alignment 3 (MC & EM based alignment)
10 1.0 0.592 2 0.458 0.861 0.268 52.644 0.898 0.028 - 0.614 0.386
11 1.5 0.631 2 0.436 0.862 0.267 52.994 0.870 0.054 0.771 0.618 0.382
12 2.0 0.600 2 0.454 0.878 0.251 60.982 0.880 0.051 - 0.689 0.311
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Table 3. Statistics of the resulting CoMFA models

Resion- 
Model Focusing

Leave-one-out 
cross-validation Non-cross-validation Bootstrap Predictive R2 Field 

contribution

q2 n SDEP r2 SEE F-value r boot StdDev r pred Steric Electro.

Receptor-based CoMFA model
11 1.5 0.631 2 0.436 0.862 0.267 52.994 0.870 0.054 0.771 0.618 0.382

CoMFA model, region focusing method
13 PLS 0.728 2 0.374 0.865 0.263 54.627 0.89 0.066 0.647 0.631 0.369

Table 4. The regression summary of CoMSIA models

No.
Field LOO cross-validation Non-cross-validation

r pred
S E H D A 2 

q n r2 SEE F

1 1.000 - — — - 0.604 2 0.803 0.318 37.749 -
2 - 1.000 - - - 0.467 2 0.742 0.364 24.480 -
3 - - 1.000 - - 0.565 4 0.960 0.152 90.741 -
4 - - - 1.000 - 0.495 4 0.639 0.459 6.648 -
5 - — — - 1.000 0.452 1 0.621 0.429 29.471 -
6 0.278 0.722 - - - 0.548 2 0.827 0.298 40.631 -
7 0.254 - 0.746 - - 0.630 9 0.996 0.058 291.298 -
8 0.516 - - 0.484 - 0.602 4 0.856 0.290 22.308 -
9 0.366 - - - 0.634 0.688 5 0.947 0.182 49.807 -
10 - 0.537 0.463 - - 0.490 3 0.913 0.218 56.032 -
11 - 0.619 - 0.381 - 0.674 4 0.912 0.226 39.103 -
12 - 0.550 - 0.450 0.660 5 0.975 0.125 108.391 -
13 - - 0.601 0.399 - 0.654 4 0.924 0.210 45.754 -
14 - - 0.480 - 0.520 0.780 13 0.999 0.045 330.595 -
15 - - - 0.667 0.333 0.479 1 0.616 0.432 28.828 -
16 0.165 0.438 0.397 - - 0.529 4 0.953 0.165 76.231 -
17 0.169 0.474 - 0.358 - 0.691 4 0.926 0.208 46.981 -
18 0.135 0.445 - - 0.420 0.695 6 0.987 0.094 163.490 -
19 0.169 - 0.446 0.385 - 0.681 4 0.929 0.203 49.435 -
20 0.121 - 0.397 - 0.482 0.771 12 0.998 0.049 297.599 -
21 0.320 - - 0.239 0.441 0.673 6 0.959 0.166 50.661 -
22 - - 0.437 0.207 0.356 0.748 12 0.998 0.049 298.242 -
23 - 0.481 - 0.221 0.298 0.640 4 0.945 0.180 63.931 -
24 - 0.314 0.274 - 0.412 0.656 8 0.995 0.060 301.972 -
25 - 0.376 0.316 0.308 - 0.644 4 0.949 0.172 70.144 -
26 - 0.310 0.249 0.199 0.242 0.653 4 0.961 0.150 92.922 -
27 0.111 - 0.363 0.214 0.313 0.754 12 0.998 0.049 301.651 -
28 0.129 0.391 - 0.214 0.266 0.706 4 0.960 0.152 90.897 0.777
29 0.092 0.295 0.240 - 0.373 0.685 9 0.997 0.055 326.175 -
30 0.102 0.327 0.268 0.304 - 0.680 4 0.953 0.165 76.471 -
31 0.085 0.249 0.221 0.173 0.272 0.685 9 0.997 0.055 317.603 -

S, steric; E, electrostatic; H, hydrophobic; D, hydrogen bond donor; A, hydrogen bond acceptor; n, number of statistical components; q2, the LOO 
cross-validated correlation coefficient; r2, the correlation coefficient; SEE, standard estimated error; F, the Fisher value; r2predictive, the correlation 
coeffient for test set.
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Table 5. The Observed vs. predicted activities (pIC50) with deviations by

No. pIC50
CoMFA RF-CoMFA CoMSIA HQSAR

prediction △2 prediction △2 prediction △2 prediction △2

1 7.523 7.256 0.071 7.326 0.039 7.277 0.061 7.353 0.029
2 7.770 7.447 0.104 7.481 0.084 7.615 0.024 7.848 0.006
3 7.495 7.373 0.015 7.430 0.004 7.463 0.001 7.53 0.001
4 6.967 7.127 0.026 7.113 0.021 7.169 0.041 6.792 0.031
5 * 6.186 7.078 0.796 7.118 0.869 7.087 0.812 7.059 0.762
6 6.277 6.298 0.000 6.206 0.005 6.302 0.001 6.307 0.001
7 6.159 5.881 0.077 5.912 0.061 6.066 0.009 6.128 0.001
8 7.495 7.980 0.235 7.996 0.251 7.518 0.001 7.654 0.025
9 * 7.699 7.981 0.080 8.038 0.115 8.098 0.159 8.201 0.252

10 7.481 7.610 0.017 7.597 0.013 7.405 0.006 7.342 0.019
11 * 7.357 7.920 0.317 7.964 0.368 7.710 0.125 7.663 0.094
12 6.757 7.317 0.314 7.274 0.267 7.087 0.109 7.251 0.244
13 7.745 7.898 0.023 7.920 0.031 7.716 0.001 7.744 0.000
14 7.824 7.883 0.003 7.870 0.002 7.906 0.007 7.902 0.006
15 * 6.629 7.872 1.545 7.853 1.498 7.798 1.367 7.902 1.621
16 8.046 7.943 0.011 7.872 0.030 8.043 0.000 7.885 0.026
17 6.684 7.030 0.120 7.064 0.144 6.701 0.000 6.669 0.000
18 8.301 8.159 0.020 8.073 0.052 8.365 0.004 8.132 0.029
19 8.000 7.931 0.005 7.918 0.007 8.036 0.001 8.132 0.017
20 8.155 8.108 0.002 8.142 0.000 8.042 0.013 8.03 0.016
21 8.523 8.215 0.095 8.225 0.089 8.521 0.000 8.278 0.060
22 8.046 8.139 0.009 8.168 0.015 8.249 0.041 8.278 0.054
23 8.097 7.962 0.018 7.976 0.015 7.952 0.021 8.033 0.004
24 8.222 8.011 0.045 8.003 0.048 8.135 0.008 8.28 0.003

SD 0.180 0.184 0.130 0.151

aSD: standard deviation.

Table 6. HQSAR analyses for various fragment distinctions using 
default fragment size (4-7)

No. Distinction q2 r2 Ave SEE LV Length

aAVE: Ensemble q2.

1 A 0.807 0.912 0.803 0.315 2 199
2 A/B 0.718 0.936 0.701 0.393 3 353
3 A/B/Co 0.730 0.962 0.659 0.397 4 97
4 A/B/Co/H 0.648 0.882 0.620 0.439 3 353
5 A/B/Co/Cr 0.753 0.969 0.699 0.380 4 97
6 A/B/Cr 0.732 0.928 0.698 0.383 3 151
7 A/Co 0.667 0.867 0.659 0.414 2 307
8 Co 0.687 0.837 0.656 0.402 2 257
9 A/Co/DA 0.775 0.965 0.705 0.362 4 199
10 A/B/Co/DA 0.741 0.877 0.719 0.365 2 151

expect, most compounds have H-bond interaction with M149 
(hinge). R1 and R2 substitutions interact with M146 and Glu155 
which are important residues for JNK3 selectivity as mentioned 
before.

Result and Discussion

CoMFA and CoMSIA analyses. Based on four different 
alignments, CoMFA models were derived with different CoM
FA grid spacings by PLS analyses. The statistics summaries 
for different CoMFA models are listed in Table 2. The best 
CoMFA model 11 was obtained from MC Searching & EM 
based alignment and grid spacing 1.5 A (q2 = 0.631, r2 = 0.862, 
F = 52.994, SEE = 0.267). However, other alignment methods 
could give lower statistics. With the CoMFA model 11, region 
focusing (RF) strategy was applied by reducing the number of 
independent variables in CoMFA calculation in order to get 
more predictable CoMFA model. RF-CoMFA model 13 with 
better statics was produced (q2 = 0.728, r2 = 0.865, F = 54.627, 
SEE = 0.263). Table 3 shows the statistics summary for RF- 
CoMFA model 13. To verify the statistical confidence and ro
bustness of CoMFA models, 100 bootstrapping samplings were 
performed. A bootstrapped r2boot of 0.890 and a standard de
viation (StdDev) of 0.666 from RF-CoMFA model 13 were 
obtained (Table 3). These statistical values (RF-CoMFA 13) 
indicate a good internal consistency in the training data set.

The aligned compounds used for this CoMFA model 13
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Table 7. HQSAR analysis for the influence of various fragment sizes using the best fragment distinction (A)

No. Size q2 r2 Ave SEE LV Length 2 丄 pred

1 1-2 0.269 0.582 0.269 0.653 4 199 -
2 1-3 0.424 0.731 0.444 0.561 3 97 -
3 1-7 0.814 0.910 0.792 0.310 2 199 -
4 2-7 0.810 0.910 0.794 0.313 2 199 -
5 3-7 0.809 0.911 0.795 0.313 2 199 -
6 3-8 0.836 0.948 0.812 0.299 3 307 -
7 3-9 0.838 0.950 0.805 0.298 3 151 0.700
8 4-7 0.807 0.912 0.803 0.315 2 199 -
9 4-8 0.833 0.933 0.812 0.293 2 151 -
10 5-7 0.805 0.923 0.803 0.317 2 353 -
11 5-8 0.833 0.930 0.814 0.294 2 151 -
12 5-10 0.830 0.947 0.788 0.305 3 151 -
13 6-8 0.838 0.935 0.824 0.289 2 151 -
14 7-9 0.825 0.944 0.807 0.300 2 307 -
15 7-10 0.834 0.951 0.783 0.301 3 151 -
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Figure 3. Plots of predicted vs. observed values of (a) CoMFA, (b) RF 
CoMFA, (c) CoMSIA, and (d) HQSAR.

were applied to derive CoMSIA model. In CoMSIA studies, 
allpossible cases using five fields were calculated, and table 4 
shows the statistics summaries of CoMSIA. The important val
ues to determine the quality of QSAR models are q2 and statis
tical component. When considering the number of input com
pounds, the number of statistical components below six is pre
ferred. Among CoMSIA models which satisfy these criteria, 
the CoMSIA model 28 that has the highest q2 value was chosen. 
The CoMSIA model 28 was produced by using four field des-

criptors (steric, electrostatic, H-bond donor, and acceptor). The 
combination of four fields (steric, electrostatic, H-bond ac- 
ceptor/donor) gave the best statistics result (q2 = 0.706, r2 = 
0.960, F = 90.897, SEE = 0.152).

The statistics summary by CoMSIA models is listed in 
Table 4. The observed activities and the predicted activities by 
the CoMFA, RF-CoMFA, and CoMSIA models are listed in 
Table 5. Table 5 shows that activities predicted by those pro
duced models are in good agreement with the observed data, 
suggesting that those three models should have satisfactory 
predictive abilities. Figures 3 (a) ~ (c) show plots of the observed 
data and the predicted data by the CoMFA, RF-CoMFA and 
CoMSIA models.

HQSAR analysis. HQSAR model is influenced by various 
fragment distinction factors (atom types (A), bond types (B), 
atom hybridization or connectivity (Co), chirality (Cr), hy
drogen bond and donor(H)) and fragment sizes. These varia
tions were examined to produce highly predictable HQSAR 
model. To find the best fragment distinction factors in the ini
tial HQSAR stage various combinations of the above fragment 
distinction factors were employed with the default fragment 
size 4 ~ 7 (Table 6). The HQSAR model which was produced 
from fragment distinctions of A was selected based on PLS 
analysis that gives the best q2 Next, several analyses with vari
ous fragment sizeswere investigated to find a better HQSAR 
model using the fragment distinction factor (A). Table 7 shows 
the evaluated fragment sizes and their statistical results. The 
HQSAR model using fragment size 3 〜9 shows the best PLS 
analysis (q2 = 0.838, r2 = 0.950, SEE = 0.298, LV = 3, Length = 
151). The predictive activities of all compounds were shown 
in Table 5. Figure 3 (d) shows the plot of the observed versus the 
predicted activities by the HQSAR model.

Validation of 3D QSAR and HQSAR models. Table 5 shows 
predicted pIC50 values from different QSAR models (CoMFA, 
RF-CoMFA, CoMSIA, and HQSAR). To validate the predicta
bility and accuracy of the models, predictive correlation coeffi
cient r2pred was investigated for all compounds including training
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Figure 4. CoMFA steric contour maps with compound 2 (gray), 3 ~ 
7 (orange), and 17 (purple). Green contours indicate regions where 
bulky groups increase activity, whereas yellow contours indicate re
gions where bulky groups decrease activity.

Figure 6. CoMSIA steric contour map with compounds 2, 20 〜22 
(gray) and compound 3 〜 7 (orange), and 17 (purple). Green contours 
indicate regions where bulky groups increase activity; yellow con
tours indicate regions where bulky groups decrease activity.

Figure 5. The hydrophobic surface map of JNK3's active site with 
CoMFA steric contour map. Dark brown color indicates the highest 
hydrophobicity, while blue color signifies the least. hydrophobic 
maps of receptor surface were produced by MOLCAD program in 
SYBYL.

and test set. The predicted r2pred values for QSAR models are 
shown in Table 2 - 4, and 7. The final r%ed values are 0.771 for 
CoMFA, 0.647 for RF-CoMFA, 0.777 for CoMSIA, and 0.700 
for HQSAR. These high scores of r%ed imply that our 3D 
QSAR and HQSAR models are highly predictable. Figure 3 
shows correlation between predicted and observed activity 
values by these models.

RF-CoMFA contour map. Figure 4 shows 3D contour map of 
RF-CoMFA steric field interaction with compounds 2 ~ 7 and 
14. This RF-CoMFA steric contour map can explain key factors 
affecting compound’s activity. Firstly, the 4-fluorine atom as 
R1 is better in increasing biological activity than other atoms 
on the 2-substitutions in aniline moiety. RF-CoMFA steric con
tour map has sterically favored region (green) around 4-position 
in aniline and unfavored regions (yellow) around 2-position. 
Compounds 3 ~ 7 have various substituents on 2-position, and 
they are located close to yellow contour maps. On the other hand, 
compound 2 has fluorine atom on 4-position in aniline, and 
this is located close to green contour map. This can be the reason 
why compound 2 has higher biological activity value than 
compounds 3 〜7. In the same way, compounds 18, 21, and 24

Glu147

Figure 7. CoMSIA H-bond donor contour map with compound 10 
(green), 17 (purple), and 19 (orange) within the active site. Yellow 
dot lines show H-bond interaction.

Figure 8. HQSAR atomic contribution maps. Green and yellow colors 
imply highest to higher atomic contributions to the activity while red 
and orange colors denote lower to lowest atomic contributions to the 
activity. The atoms with intermediate contributions are colored white.

with fluorine atom on 4-position have higher biological acti
vities than compounds 16, 20, and 23 with no Ri substitution. 
The hydrophobic map of the active site surface was produced 
by MOLCAD program in SYBYL and this hydrophobic map 
also supports this fact.24 In Figure 5 it is suggested that the two 
residues, Ile92 and Met146, whichare located close to Ri, could 
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supply a steric hindrance with 2-substitution for Ri. However, 
there is an empty hydrophobic region surrounded by Leu144, 
Val145, and Met146 residues (Figure 5) over the fluorine atom 
of R1. The compounds with 2-fluorine atom of R1 can have 
hydrophobic interaction with those residues (Leu144 ~ Met146). 
Especially, the gatekeeper Met146 which is important for selec
tivity, is located close to 2-substitution of R1. The hydrophobic 
4-substitutions on aniline could have a substantial interaction 
with hydrophobic residues (Leu144 ~ Met146) without steric 
clash with Met146 at the same time. Consequently, the RF-CoM- 
FA steric contour map and the hydrophobic surface map suggest 
that hydrophobic substitutions on 4-position as R1 would be 
best for the activity.

Secondly, RF-CoMFA steric contour map shows also steri- 
cally favored and unfavored regions around R2 (Figure 4). This 
could explain the low potency of compound 17 (purple in 
Figure 4) compared to compounds 16 〜24 although they have 
very similar molecular structures. Most of R2 groups of 16 〜 
24 are located in the major green region, while R2 of 17 is 
located in the yellow regions. This fact was also supported in the 
structure of JNK3’s active site (Figure 2 (d)). In Figure 2 (d), the 
Asp150 residue is located at similar positions of yellow region 
(Figure 4) and the Asp150 belongs to hinge region which is quite 
important for H-bond interaction. Due to the steric hindrance 
between R2 substitution and Asp150, compound 17 moved 
away from the hinge region and lost H-bond interaction with 
Met149 (hinge). Poor biological activity of compound 17 can 
be explained by the fact that there is neither R1 substitution 
nor H-bond interaction with Met149.

CoMSIA contour map. Overall, the steric contour map from 
the CoMSIA analysis in Figure 6 is quite similar to the RF- 
CoMFA steric map (Figure 4). The CoMSIA steric contour map 
also has sterically favored (green) and unfavored (yellow) re
gions similar to those of the RF-CoMFA steric contour map. 
In Figure 6, R1 substitutions of compound 3 〜7 are located 
close to a yellow region, whereas the R1 of 2 is positioned in 
green region. This could explain the better activity of 2 over 
compound 3 〜7. Also, the R2 substituent of 17 is positioned in 
another yellow region, while the substitutions of compound 
20 〜22 are not positioned there. The CoMSIA steric contour 
map is well in agreement with the RF-CoMFA steric contour 
map. Both CoMFA and CoMSIA steric contour maps explain 
that 4-R1 substitution is preferred to 2-R1 substitution with a 
hydrophobic group for higher biological activity.

Figure 7 shows the CoMSIA H-bond donor and acceptor 
contour maps with compounds 10, 17, and 19 within the active 
site. The magenta contours regions are favored for H-bond 
acceptor, while the red contours regions are not. This CoMSIA 
H-bond acceptor contour map can explain why compound 17 
has much lower biological activity than compounds 18 and 
19. The terminal carbonyl groups of compounds 18 and 19 are 
oriented toward magenta regions. However, the carbonyl group 
of 17 is oriented toward red volume. In Figure 7, the cyan color 
indicates regions where H-bond donor substituents enhance 
activity, whereas the purple color indicates regions where H- 
bond donor substituents reduce activity. Compounds 18 〜24 
have NH group close to R2 substitution which can work as H- 
bond donor, while NH group of 17 is not oriented toward cyan 

region. This can be added to the explanation of compound 17’s 
poor biological activity with other contour maps of CoMFA 
and CoMSIA.

The two steric contour maps of RF-CoMFA and CoMSIA 
closely reflect the structural shape around R1 region in the active 
site (Figure 5). The CoMSIA H-bond acceptor and donor con
tour maps also reflect H-bond properties around R2 region in 
the active site (Figure 7). The CoMSIA H-bond donor and ac
ceptor contour maps accord closely with H-bond interactions 
with Met149, Asn152, and Gln155. The cyan region favored for 
H-bond donor group indicates that the corresponding H-bond 
acceptor group should be near. In the same way, magenta region 
indicates that H-bond donor group of the active site should be 
around. In Figure 7, the cyan region matches the carbonyl group 
of Met149’s backbone, and magenta regions match well with 
Gln155 and Asn152’s NH groups. These CoMSIA H-bond con
tour maps describe H- bond properties of the active site quite 
satisfactorily.

As mentioned earlier, interactions with Met146 (gatekeeper), 
Met149 (hinge) and Glu155 are quite important for biological 
activity and selectivity. The unique gatekeeper residue, Met146 
is involved in selectivity, and the inhibitors without interaction 
with Met146 could lose selectivity for JNK3. An H-bond inter
action with Met149 should be necessary for JNK3 inhibitors 
like most other kinase inhibitors' H-bond interaction with hinge 
region. The Glu155 residue in JNK3 corresponds to Asn115 
residue in p38. Since they are different in size and electrostatic 
property, interactions with Glu155 would help alot in gaining 
selectivity for JNK3. In these points of view, these CoMSIA 
steric and H-bond contour maps can give significant insight to 
highly active and selective inhibitors of JNK3.

HQSAR atomic contribution map. PLS analysis of HQSAR 
produces color-coded structure diagram representing the degree 
of each atom's contribution according to their biological activity. 
In general, the green and yellow colors in HQSAR diagrams 
mean the highest to higher atomic contributions to the activity, 
while orange and red colors denote lower to lowest atomic con
tributions to the activity. The atoms with intermediate contri
bution are colored white. Figure 8 shows atomic contributions 
of model compounds 2, 3, 23, and 24 to their biological acti
vities. In Figure 8, the models explain that the 4-fluorine atom of 
R1 is important to biological activity; (a) and (b) show com
pounds 2 and 24 with 4-fluorine substitution has green atoms 
while (c) and (d) show compounds 3 and 23 do not. This HQSAR 
atomic contribution models are in good agreement with the 
steric contour maps of RF-CoMFA and CoMSIA.

Conclusion

In the present study, three QSAR analyses (CoMFA, CoM
SIA, and HQSAR) were built with a seriesof JNK3 inhibitors. 
Various alignment methods (ligand-based, pharmacophore
based, and receptor-guided) were tried to derive reasonable 
CoMFA and CoMSIA models. Among those alignments, re
ceptor-guided alignment using MC searching & EM produced 
the best alignment of input compounds. Based on this align
ment, the RF-CoMFA and CoMSIA models were developed. 
The RF-CoMFA and CoMSIA models show critical steric and 



2748 Bull. Korean Chem. Soc. 2009, Vol. 30, No. 11 Jae Yoon Chung et al

H-bond interactions necessary for designing new JNK3 inhibi
tors. The CoMFA and CoMSIA steric contour maps all suggest 
that a hydrophobic substitution at 4-R1 in aniline moiety would 
increase biological activity. This suggestion was also supported 
by HQSAR. The H-bond contour maps by CoMSIA can explain 
the differences of compounds activities. These steric and H- 
bond contour maps were investigated through comparison 
with the properties of important residues in the active site. These 
interactions found by CoMFA, CoMSIA, and HQSAR will be 
extremely useful for design of a new generation of JNK3 inhi
bitors.
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