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Abstract

Poly(ADP-ribose)polymerase-1 (PARP-1) is a nuclear enzyme involved in various physical functions
reiated to genomic repair, and PARP inhibitors have therapeutic application in a variety of neurological
diseases. Docking and the QSAR (quantitative structure-activity relationships) studies for 52 PARP-1
inhibitors were conducted using FlexX algorithm, comparative molecular field analysis (CoMFA), and
hologram quantitative structure-activity relationship analysis (HQSAR). The resultant FlexX model
showed a reasonable correlation (* = 0.701) between predicted activity and observed activity. Partial
least squares analysis produced statistically significant models with g° values of 0.795 (SDEP=0.690, =
0.940, 5=0.367) and 0.796 (SDEP=0.678, r*= 0.919, s=0.427) for COMFA and HQSAR, respectively. The
models for the entire inhibitor set were validated by prediction test and scrambling in both QSAR
methods. In this work, combination of docking, CoMFA with 3D descriptors and HQSAR based on
molecular fragments provided an improved understanding in the interaction between the inhibitors and

the PARP. This can be utilized for virtual screening to design novel PARP-1 inhibitors.

against myocardial ischemia and reperfusion,
Introduction streptozotocin-induced diabetes and endotoxic
Poly(ADP-ribose) polymerase-1 (PARP-1) also  shock.*'® Inhibition of PARP is exploited
known as poly(ADP-ribose) synthetase is an essentially with the scope of suppressing PARP-1
abundant nuclear enzyme implicated in cellular activity, that on one hand protects cells from
responses to DNA injury provoked by genotoxic certain types of DNA damage, while on the other
stress.'® The results obtained with PARP promotes cell death in response to massive DNA
knockout mice have demonstrated that PARP-1 breakage. PARP-1 could therefore be considered
deficiency might be involved in neuronal damage as a potential target for the development of
derived from ischémic injury, neurotoxin-induced pharmacological strategies to enhance the
parkinsonism or traumatic brain injury.*” Genetic ~ antitumor efficacy.'’ PARP-1 consists of DNA

disruption of PARP-1 gene provides protection binding domain, automodification site and
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catalytic domain."> Most of the PARP inhibitors
so far developed bind to the nicotinamide-binding
domain, where they act as competitive
inhibitors."

In this paper, we used an approach combining
FlexX>%, CoMFA!* and HQSAR'" methods to
describe QSAR models for series of PARP
inhibitors, CoMFA captures 3D information
and the

conformation of the molecules, while HQSAR

concerning the ligands specific
gives sub-structural features in sets of molecules
that are relevant to biological activity. All
available inhibitors were collected from the
literature and reported in Table 1 along with their
inhibitory ICs, values.>''? In addition to QSAR,
a prediction test and randomization test were used

to determine the statistical significance of the

analyses.”

Methods

Molecular Modeling

Both CoMFA and HQSAR
performed using the SYBYL 6.9.2' molecular

studies were

modei'mg software package on a Silicon Graphics
workstation, Origin R3000 processors. All the
compounds were fully optimized using Tripos
molecular mechanics force field with a distance-
dependént diclectric constant and an energy
gradient convergence criterion of 0.05 kcal/mol.
The partial atomic charges required for the
calculation of the electrostatic potential were

assigned using the PEOE method.”

Molecular Docking
All ligand molecules that were included for 3D
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QSAR studies were used in the FlexX>®
docking study. FlexX is a fast automated docking
program that considers ligand conformational
flexibility by an incremental fragment placing
technique. The crystal structure (3pax) of chicken
PARP-1 was used in this study. The active site for
docking was defined as all amino acid within 8.0
A proximity of the co-crystallized compound.
FlexX total energy scores were correlated with the
inhibitory activities for each ligand using the

least-squares fit method.

CoMFA Analysis

Superimposition of the molecules was carried
out using the pose of crystallized complexes of
PARP-1 with FlexX docked binding mode and
some inhibitors as the template (2paw, lefy; 1pax,
2pax, 3pax, 4pax). The overlapped molecules
were surrounded by a 3D grid of points extending
in three dimensions to at least 4A beyond the
union volume occupied by the superimposed
molecules. The default sp® carbon atom with +1
charge was selected as the probe atom for the
calculations of steric and electrostatic fields
around the aligned molecules. The probe-ligand
interaction energies were calculated using a
Lennard-Jones 6-12 potential and Coulombic
potential with a distance-dependent dielectric,
respectively. Values of steric and electrostatic
energies were truncated at 30 kcal/mol. The entire
set of inhibitors was divided into two groups in
the approximate ratio of 3:1, ie, 12 inhibitors
were used as a test set to assess the predictive

power. This experiment was repeated ten times.



Table 1. Inhibitory values (ICso) of selected classes of PARP inhibitor.
O

o Code R ICso(LM)
XY NH, NH
4R©)\ N/)\R 41 H 0.30
’ X 42 NO2 0.35
Code R ICso(uM) Code R X IC{pM)
1 H 220 20 H H 9.50 2
2 AF 200 21 cH3 H 5.60 /EH
3 4-F 200 22 CH3 OH 0.40
4 3Cl 22.0 Code ICso(M)
5 4-Cl 300
o) 43 12
6 3-NH2 33.0
NH
7 4-NH2 1800 Py o}
N
8 3-Br 55 x ©i‘LNH
9 4-Br 2200 R e~
10 3-0OCH3 17.0
Code R X ICso(uM) Code ICs(uM)
1 3.0H 9.10 50
H CH3 0.87
12 4-0H 280 23 4“4 8.5
24 H OCH3 42
13 3-CH3 19.0 o
. 25 NO2 CH3 0.13
4 3-NO2 160
; 26 NO2  OCH3 085 /NC
12 3N(ECH32 120 27 CF3 OCH3 39 N ©
9 28 CN CH3 0.27
[Nk, 29 CN  OCH3 134 Code 1Cso(1M)
N 30 OCH3 CH3 0.19 45 8.1
HN— 31 OCH3  OCH3 2.0 4
c
Hs 32 NH2 CH3 0.44 oN
Code ICy(iM) 33 CO2CH3 CH3 4.80 L =R
16 100 34 H OH 1.06 7\
s 35 NO2 OH 023 H
36 OH OH 029
NH
37 OH CH3 0.22 Code R ICso(uM)
38 NH2 OH 0.52 46 3-CH.NMe, 0.008
" 47 4-CH,;NMe, 0.005
Code ICso(iM) Oy Np® 48 4-CH,-(1- 0.006
17 0.44 OO pyrrolidyiny)
o}
NH R o N
o
Code R ICso(pM)
R SN—r
- 39 H 1.40 N
(¢ R Ic
ode so(ptM) 40 NH2 0.18
18 H 7.00 Code R ICso(1M)
19 OH 0.39 o o H 0047
O NH 50 Ph 0.005
O 51  (3-CH:NMep)Ph  0.005
52 (4-CH,NMe;)Ph  0.005
R
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Furthermore, for the whole set, to detect possible
chance correlations, the scrambling test was

repeated ten times.

Hologram QSAR (HQSAR)

For HQSAR, the HQSAR module of SYBYL
was used. All the sub-structural fragments in the
size range were generated for each molecule. The
SLN (SYBYL Line Notation) for each fragment
generated was mapped to an unique integer. The
substructure fingerprints were then hashed into
hologram bins with lengths from 53 to 401. In
order to get good models from HQSAR analysis,
we investigated the influence of the fragment
distinction and the fragment size on the key
statistical parameters. Chirality flags were not
utilized in the present study. The best model was
chosen based on the least standard error of cross-

validated predictions.

PLS Analysis

PLS analysis was carried out using the leave-
one-out option to obtain the optimal number of
components to be used subsequently in the final
analysis. The cross-validated coefficient ¢° was

calculated using formula

2 =1— Z(Yobs - Ypred)2
Z (Yobs - Ymemz)2

. ”
where Yeq, Yo, and Y,,..., are predicted, observed,

q

and mean values of the target property (pICso),
respectively. The optimal number of components
was.designated as that which yielded the highest

q* values and the smallest rms error values.
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Results and Discussion
Molecular docking

We conducted docking analysis of all data sets
on the active site of the PARP-1 enzyme (3pax)
using FlexX program. The inhibitors 10 (3pax),
17 (1pax), 22 (4pax), 40 (2pax) were selected as
the starting set of 52 inhibitors and were tested for
ability to reproduce the crystallized binding
geometry. In all results, FlexX easily found the
binding geometry corresponding to  the
crystallized complex among the solutions with the
lowest energy, being the rms deviation between
the docked and the crystallized geometry in the
limitation of the crystallographic resolution (rms
<1.0 A, resolution 2.4 A). Conserved important
interaction in all the docked PARP-inhibitor
complexes is hydrogen bond between the amide
moiety and the backbone of Gly863, and =n-n
interaction between the aromatic group of the
inhibitors and the side chain of Tyr907. The best
possible binding modes of the most active
inhibitors (50, 52) at the active site are displayed
in Figure 1. To evaluate the relationship between
activities and binding energy scores obtained
from FlexX docking, we have used least-squares
fit analyses. The equations were obtained for the
inhibitory activities represented as pICs, values,
using the binding energies as the sole descriptor
variable with good correlation (* = 0.701).
pICsp =0.020 — 0.255AF

Figure 2 shows the correlation between
predicted activities and observed activities for the

total set.
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Figurel. Docking pose of inhibitor 50 (a), 52 (b)
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Figure 2. Observed activity (pICsp) versus predicted activity

(kcal/mol) calculated by FlexX docking

CoMFA Analysis

Superimposition of the molecules was carried
out based on the pose of crystallized inhibitors
and the docked geometry. Figure 3 shows the
aligned molecules within the grid box used to
generate the CoMFA column. The statistical
results for CoOMFA models based on steric and

electrostatic in interactions are summarized in
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Table 2. The optimal CoMFA model for the entire
training set gave ¢°=0.795 with 5 principal
components. Figure 4 illustrates the cross-
validated correlation curves for our CoMFA

model.

Table 2. Statistical Results of COMFA.

Model
N s
q® 0.795
SDEP® 0.690
e 0.940
§° 0.367
F value 144.965
Ste® : Ele" 0.603 : 0.397

*Number of PLS components in analysis ®Squared correlation
coefficient of a cross-validated analysis ‘Standard deviation of
error of predictions “Squared correlation coefficient of a non-
cross-validated analysis “Standard deviation of a non-cross-
validated analysis TF-ratio & "Molecular filed used in CoMFA
(Ste : steric field, Ele : electrostatic field)

More rigorous statistical tests, i.e., prediction
and scrambling test, were performed. Noticeable

difference of the statistical parameters of the



prediction test (rzp,ed =0.741 £ 0.044, 5preq = 0.695 suggests that mofe bulky groups are required to
+ 0.060) from those of the scrambling (¢* =0.008 increase activity. In our data set, cyclic
+ 0.098, SDEP = 1.192 £ 0.054) reflects the derivatives have better activity than that of
stability and robustness of our COMFA model. benzamide derivatives and inhibitors with C-2
To visualize the information content of the model, aryl substituted indole core display relatively
the CoMFA contour maps on the one (50) of the good activity by forming hydrophobic interaction
most active inilibitors is shown in Figure 5. In with Tyr896 and Tyr889 residue.

steric field, the green contour around tricyclic ring
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Figure 3. Alignment of PARP inhibitors used in the CoOMFA Figure 4. Observed versus calculated activity (pIC50) of
model. CoMFA model

Figure 5. CoMFA STDEV*COEFF contour plots. Green contour (contribution level of 80%) indicates region where bulky group
increases activity, whereas yellow contour (contribution level of 20%) indicates region where bulky group decreases activity. Blue
contour (contribution level of 80%) indicates region where positive group increases activity, whereas red contour (contribution level

of 20%) indicates region where negative charge increases activity.
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The yellow contours suggest that bulky groups in
these regions are not beneficial to activity because
of bad contact with Glu988, GIn763 and Asn767
residues. In electrostatic interaction field, the blue
contour around the sp® oxygen of tricylic ring
suggests that the cyclic derivatives of benzamide
are more potent inhibitors. The blue contour on
right of tricyclic ring shows that groups with
positive charge in this area increase activity. The
blue contour near the lower part of tricyclic ring
indicates that hydrophobic groups in these regions
are beneficial to activity and a hydrogen bond
donor at this position enhances activity by
forming hydrogen bonds with the carboxyl group
of Glu 988 residues. The red contours display that
groups with negative charge in these regions are
favorable to activity by forming hydrogen bond

with Asn767 residue.

HQSAR analysis

The data in Table 3 shows that predictive
HQSAR models are readily derived using atoms,
bond and connectivity-distinction information.
Adding hydrogen distinction into molecular
hologram does not appear to improve the model
as measured by statistical parameters. We
employed different fragment sizes on the best
model for fragment distinction and the results are
summarized in Table 4. The best model was found
when default fragment size option (4-7) was used
with 6 optimum components. A plot of observed
and calculated activities for cross-validated model
is shown in Figure 6.

As an additional test of the predictability of the
models, prediction and scrambling test were

performed as for COMFA model.
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Table 3. HQSAR analysis for various fragments distinction on
statistical parameters using fragment size default (4-7).

Fragment Statistical parameters
distinction 7 SDEP r s PCA
At-Bon* 0.795 0681 0931 0.396 5
Con® 0796 0678 0919 0.427 5
Con-H* 0771 0.704 0.961 0.518 4

3Atoms and Bond ®Atom, bond and connection ‘Atom, bond,

connection and Hydrogen Bond

Table 4. HQSAR analysis for the influence of various
fragments sizes on the key statistical parameters using the best

fragment distinction (atom, bonds and connectivity).

Fragment Statistical parameters
size 7 SDEP 7 s PCA
3-6 0.769 0.731 0930  0.403 6
5-8 0.777 0.711 0.924 0.416 | 6
6-9 0.758 0.747 0914 0.445 6
7-10 0.752 0.749 0915 0438 6

The result of prediction test (©° peq = 0.748 %
0.075, Spea = 0.628 = 0.069) showed obvious
difference from those of the scrambling test (¢°=
0.075 £ 0.065, SDEP = 1.132 £ 0.038).

To visualize information for activity from its
fingerprint, the most important fragments of most
active inhibitor (50) were color-coded by results
of the final PLS analysis. Figure 7 shows tricyclic
core contribute positively to activity:

In summary, the hologram length that leads to
the best PLS analysis was used in development of
the pharmacophore. The CoMFA model reveals
regions can be correlated with the appropriate
enzyme residues in 3D space around inhibitors.
Combination of CoMFA and HQSAR with

considerable statistical quality provided pharma-



cophore and 3D information surrounding it to
design novel PARP inhibitors.
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Figure 6. Observed versus calculated activity (pIC50) of
HQSAR model

Figure 7. The HQSAR contribution map for PARP inhibitors
(51).

Conclusion

In the present study, we tried to derive reasonable
QSAR model through combining of CoMFA and
HQSAR method. The prediction power for the
entire inhibitor set was validated by prediction
and scrambling tests for both QSAR methods.
Although it is still a widely used tool for the study
of QSAR at the 3D level, CoMFA tool is limited
by the need to align the database molecules

correctly within 3D space. On the other hand,
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HQSAR requires only information about 2D
molecular structure. The similar statistical results
of them make it possible to overcome and
complement the limitations for CoMFA and
HQSAR method. This successful combination of
CoMFA model with 3D descriptors and HQSAR
model based on representation of the molecular
fragments would be useful to address the design
of new potent PARP inhibitor.
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