• Title/Summary/Keyword: 2D laser displacement sensor

Search Result 11, Processing Time 0.024 seconds

Autonomous Calibration of a 2D Laser Displacement Sensor by Matching a Single Point on a Flat Structure (평면 구조물의 단일점 일치를 이용한 2차원 레이저 거리감지센서의 자동 캘리브레이션)

  • Joung, Ji Hoon;Kang, Tae-Sun;Shin, Hyeon-Ho;Kim, SooJong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.218-222
    • /
    • 2014
  • In this paper, we introduce an autonomous calibration method for a 2D laser displacement sensor (e.g. laser vision sensor and laser range finder) by matching a single point on a flat structure. Many arc welding robots install a 2D laser displacement sensor to expand their application by recognizing their environment (e.g. base metal and seam). In such systems, sensing data should be transformed to the robot's coordinates, and the geometric relation (i.e. rotation and translation) between the robot's coordinates and sensor coordinates should be known for the transformation. Calibration means the inference process of geometric relation between the sensor and robot. Generally, the matching of more than 3 points is required to infer the geometric relation. However, we introduce a novel method to calibrate using only 1 point matching and use a specific flat structure (i.e. circular hole) which enables us to find the geometric relation with a single point matching. We make the rotation component of the calibration results as a constant to use only a single point by moving a robot to a specific pose. The flat structure can be installed easily in a manufacturing site, because the structure does not have a volume (i.e. almost 2D structure). The calibration process is fully autonomous and does not need any manual operation. A robot which installed the sensor moves to the specific pose by sensing features of the circular hole such as length of chord and center position of the chord. We show the precision of the proposed method by performing repetitive experiments in various situations. Furthermore, we applied the result of the proposed method to sensor based seam tracking with a robot, and report the difference of the robot's TCP (Tool Center Point) trajectory. This experiment shows that the proposed method ensures precision.

Conceptual Design and Displacement Recognition Performance Verification of Displacement Measurement System for Retaining Wall Structure Based on Laser Sensor (레이저 센서 기반 흙막이 구조체 변위 계측 시스템의 개념 디자인 및 변위 인식 성능 검증)

  • Kim, Jun-Sang;Lee, Gil-yong;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.64-72
    • /
    • 2022
  • The retaining wall structure is essential for construction work that performs underground excavation. Displacement management of the retaining wall structure is important regardless of the size of the construction. However, in the case of small-scale construction sites with an excavation depth of less than 10m, displacement management of retaining wall structure not properly performed due to problems such as 1) companies' smallness, 2) lack of capacity of construction managers, 3) complexity of installation, dismantling and displacement of measuring instruments. As a result of analyzing previous research, it was analyzed that it is difficult to apply this to a small - scale construction site because most of the previous research has problems in using an expensive 3D scanner or installing many measuring instruments. This study aims to propose a conceptual design of a displacement measurement system for retaining wall structure based on laser sensor and to verify the displacement recognition performance of core technology applied to the conceptual design. A conceptual design was proposed using a 2D laser scanner. As a result of verifying the displacement recognition of the 2D laser scanner, a displacement of 15mm was analyzed to be sufficiently understandable. In the future, if the proposed conceptual design is developed and applied to the small-scale construction site, it is thought that it will contribute to the reduction of safety accidents at small-scale construction sites.

A Study on Displacement Measurement Hardware of Retaining Walls based on Laser Sensor for Small and Medium-sized Urban Construction Sites

  • Kim, Jun-Sang;Kim, Jung-Yeol;Kim, Young-Suk
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1250-1251
    • /
    • 2022
  • Measuring management is an important part of preventing the collapse of retaining walls in advance by evaluating their stability with a variety of measuring instruments. The current work of measuring management requires considerable human and material resources since measurement companies need to install measuring instruments at various places on the retaining wall and visit the construction site to collect measurement data and evaluate the stability of the retaining wall. It was investigated that the applicability of the current work of measuring management is poor at small and medium-sized urban construction sites(excavation depth<10m) where measuring management is not essential. Therefore, the purpose of this study is to develop a laser sensor-based hardware to support the wall displacement measurements and their control software applicable to small and medium-sized urban construction sites. The 2D lidar sensor, which is more economical than a 3D laser scanner, is applied as element technology. Additionally, the hardware is mounted on the corner strut of the retaining wall, and it collects point cloud data of the retaining wall by rotating the 2D lidar sensor 360° through a servo motor. Point cloud data collected from the hardware can be transmitted through Wi-Fi to a displacement analysis device (notebook). The hardware control software is designed to control the 2D lidar sensor and servo motor in the displacement analysis device by remote access. The process of analyzing the displacement of a retaining wall using the developed hardware and software is as follows: the construction site manager uses the displacement analysis device to 1)collect the initial point cloud data, and after a certain period 2)comparative point cloud data is collected, and 3)the distance between the initial point and comparison point cloud data is calculated in order. As a result of performing an indoor experiment, the analyses show that a displacement of approximately 15 mm can be identified. In the future, the integrated system of the hardware designed here, and the displacement analysis software to be developed can be applied to small and medium-sized urban construction sites through several field experiments. Therefore, effective management of the displacement of the retaining wall is possible in comparison with the current measuring management work in terms of ease of installation, dismantlement, displacement measurement, and economic feasibility.

  • PDF

Robust and Efficient Measurement Using a 3D Laser Line Sensor on UGVs (UGV에서 3D 레이저 라인 센서를 이용한 강건하고 효율적인 이격 측정)

  • Jiwoo Shin;Jun-Yong Park;Seoyeon Kim;Taesik Kim;Jinman Jung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.468-473
    • /
    • 2024
  • Excavation work in urban areas can induce ground deformation, which may damage nearby infrastructure. Such ground deformation can result in displacement of paving blocks near the construction site. Accurate measurement of these displacements can serve as an indicator for assessing the potential risks associated with ground deformation. This paper proposes a robust and efficient method for paving block displacement measurement using a 3D laser line sensor mounted on an Unmanned Ground Vehicle (UGV). The proposed method consists of two stages: 2D projection based object detection and measurement through the CPLF algorithm. Experimental results demonstrate that the CPLF algorithm is more efficient compared to the PLF algorithm, achieving an error of 1.36 mm and a processing time of 10.76 ms, confirming that the proposed method ensures robust online measurements with high accuracy in real-world environments with various types of paving blocks and environmental factors using a 3D laser line sensor on a UGV.

A Study of the Optimal Displacement Analysis Algorithm for Retaining Wall Displacement Measurement System Based on 2D LiDAR Sensor (2D LiDAR 센서 기반 흙막이 벽체 변위 계측 시스템의 최적 변위 분석 알고리즘 연구)

  • Kim, Jun-Sang;Lee, Gil-yong;Yoou, Geon hee;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.2
    • /
    • pp.70-78
    • /
    • 2023
  • Inclinometer has several problems of 1)difficulty installing inclinometer casing, 2) measuring 2D local lateral displacement of retaining wall, 3) measurement by manpower. To solve such problems, a 2D LiDAR sensor-based retaining wall displacement measurement system was developed in previous studies. The purpose of this study is to select a displacement analysis algorithm to be applied in the retaining wall displacement measurement system. As a result of the displacement analysis algorithm selection, the M3C2 (Multiple Model to Model Cloud Comparison) algorithm with a displacement estimation error of 2mm was selected as the displacement analysis algorithm. If the M3C2 algorithm is applied in the system and the reliability of the displacement analysis result is secured through several field experiments. Convenient management of the displacement for the retaining wall is possible in comparison with the current measurement management.

Optimizing Laser Scanner Selection and Installation through 3D Simulation-Based Planning - Focusing on Displacement Measurements of Retaining Wall Structures in Small-scale Buildings -

  • Lee, Gil-yong;Kim, Jun-Sang;Yoou, Geon hee;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.3
    • /
    • pp.68-82
    • /
    • 2024
  • The planning stage of laser scanning is crucial for acquiring high-quality 3D source data. It involves assessing the target space's environment and formulating an effective measurement strategy. However, existing practices often overlook on-site conditions, with decisions on scanner deployment and scanning locations relying heavily on the operators' experience. This approach has resulted in frequent modifications to scanning locations and diminished 3D data quality. Previous research has explored the selection of optimal scanner locations and conducted preliminary reviews through simulation, but these methods have significant drawbacks. They fail to consider scanner inaccuracies, do not support the use of multiple scanners, rely on less accurate 2D drawings, and require specialized knowledge in 3D modeling and programming. This study introduces an optimization technique for laser scanning planning using 3D simulation to address these issues. By evaluating the accuracy of scan data from various laser scanners and their positioning for scanning a retaining wall structure in a small-scale building, this method aids in refining the laser scanning plan. It enhances the decision-making process for end-users by ensuring data quality and reducing the need for plan adjustments during the planning phase.

A Fusion Sensor System for Efficient Road Surface Monitorinq on UGV (UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템 )

  • Seonghwan Ryu;Seoyeon Kim;Jiwoo Shin;Taesik Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.18-26
    • /
    • 2024
  • Road surface monitoring is essential for maintaining road environment safety through managing risk factors like rutting and crack detection. Using autonomous driving-based UGVs with high-performance 2D laser sensors enables more precise measurements. However, the increased energy consumption of these sensors is limited by constrained battery capacity. In this paper, we propose a fusion sensor system for efficient surface monitoring with UGVs. The proposed system combines color information from cameras and depth information from line laser sensors to accurately detect surface displacement. Furthermore, a dynamic sampling algorithm is applied to control the scanning frequency of line laser sensors based on the detection status of monitoring targets using camera sensors, reducing unnecessary energy consumption. A power consumption model of the fusion sensor system analyzes its energy efficiency considering various crack distributions and sensor characteristics in different mission environments. Performance analysis demonstrates that setting the power consumption of the line laser sensor to twice that of the saving state when in the active state increases power consumption efficiency by 13.3% compared to fixed sampling under the condition of λ=10, µ=10.

A Study on Development of Displacement Measurement System for Structure using a Laser and 2-D Arrayed Photo Sensors (레이저와 2차원 배열의 광전검출기를 이용한 구조물의 변위측정 시스템의 개발에 관한 연구)

  • Kang, Moon-Phil;Lee, Jin-Yi;Kim, Min-Soo;Kim, Dae-Jung;Choe, Won-Ha;Kang, Ki-Hun;Kim, Jong-Soo;Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.22-31
    • /
    • 2002
  • A Safety Monitoring System using a laser and 2-D arrayed photo sensors is developed. To monitor of the deformation and small rotation of structure the developed optical system using 2-D photo sensor array was used to detect the variation of optical orbit of laser which was induced by deformation of the structure. Also, an operating program to manage the system and an algorithm for the data acquisition and the database are introduced. In this study, we demonstrated the capabilities of this system by laboratory experiments before applying the system to the field.

The analysis design and operating characteristics of VCM actuator for auto focusing (자동초점 조절용 VCM 액추에이터 구동특성 분석)

  • Park, J.M.;Lim, H.W.;Chae, B.;Kim, D.G.;Kim, P.H.;Cho, G.B.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.447-448
    • /
    • 2007
  • Product development is consisting by trend that accommodate almost function digital cam in camera phone that can speak of Mobile appliance, and competition about number of elemental area of image sensor is consisting for market prior occupation between these. Propose in this research and small size camera phone self-focusing adjustment actuator that do city manufacture is similar with general storehouse pickup actuator drive way, but selected in cylindrical to reduce space that lens holder occupies because there is restriction loading of lens and space enemy. Target number of research established that execute drive displacement more than $600{\mu}m$ in 2.75V that is house voltage that is used in Mobile device that is general. Also, described about maximum transfer displacement characteristic, displacement response characteristic, hysteresis, response characteristic, smallest transfer step characteristic, actuator's drive characteristic that is manufactured to examination item of maximum consumption electric power by special quality estimation system that apply laser displacement sensor that produce itself to evaluate city manufactured actuator's special quality.

  • PDF

An experimental study on the cooling performance and the phase shift between piston and displacer in the Stirling cryocooler

  • Park, S. J.;Y. J. Hong;Kim, H. B.;D. Y. Koh;B. K. Yu;Lee, K. B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.111-117
    • /
    • 2003
  • In the design of the split type free displacer Stilting cryocooler the motion of the displacer is very important to decide the cooling capacity, which depends upon the working gas pressure, the swept volume in the compression space and the expansion space, operating frequency, the phase shift between piston and displacer, etc. In this study, Stirling cryocooler actuated by the electric farce of the dual linear motor is designed and manufactured. Cool down characteristics of the cold end with laser displacement sensor in the expander of the Stilting cryocooler is evaluated. The charging pressure was 15kg$_{f}$/$\textrm{cm}^2$ and operating frequency was 50Hz. Input power and the lowest temperature were about 32W and 67K, respectively. And, displacement of the piston is measured by LVDTs (Linear Variable Differential Transformers), displacement of thedisplacer is measured by laser optic method, and phase shift between piston and displacer is discussed. As the peak-to-peak pressure of the compressor was increased, peak-to-peak displacement of the displacer was increased. The peak-to-peak displacement of the displacer increases in the range of 0 - 64.5Hz(resonant frequency of the displacer), but decreases steeply when the operating frequency is bigger than the resonant frequency. Finally when the phase shift between displacements of the Piston and displacer is 45。, operating frequency is optimum and is decided by resonant frequency of the expander, mass and cross section area of the displacer and constant by friction and flow resistance.e.