Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. RS-2023-00252501, NRF-2022R1A4A1033549). 또한, 본 연구는 2024년 과학기술정보통신부 및 정보통신기획평가원의 SW중심대학사업의 연구결과로 수행되었음(2022-0-01127).
References
- R. G. Lins and S. N. Givigi, "Automatic crack detection and measurement based on image analysis," IEEE Transactions on Instrumentation and Measurement, Vol.65, No.3, pp.583-590, 2016.
- L. Zhang, F. Yang, Y. D. Zhang, and Y. J. Zhu, "Road crack detection using deep convolutional neural network," 2016 IEEE International Conference on Image Processing (ICIP), IEEE, pp.3708-3712, 2016.
- S. Zhao, F. Kang, and J. Li, "Non-contact crack visual measurement system combining improved u-net algorithm and canny edge detection method with laser rangefinder and camera," Applied Sciences 12, 10651, 2022.
- Z. Hou, K. C. Wang, and W. Gong, "Experimentation of 3d pavement imaging through stereovision," International Conference on Transportation Engineering 2007, pp.376-381, 2007.
- T. Cao, J. Hu, and S. Liu, "Enhanced edge detection for 3d crack segmentation and depth measurement with laser data," International Journal of Pattern Recognition and Artificial Intelligence, Vol.36, pp.2255006, 2022.
- J. Shin, T. Kim, Y. Jung, and J. Jung, "Fast and accurate measurement using a 3D laser line sensor on UGVs," The 2024 Korea Institute of ITS Spring Conference, pp.20-22, 2024.
- J. Shin., S. Kim., T. Kim. and J. Jung, "Automatic detection and measurement method for road block on UGVs," Proceedings of the 2023 International Conference on Research in Adaptive and Convergent Systems, pp.1-3, 2023)
- C. R. Qi, L. Yi, H. Su, and L. J. Guibas, "Pointnet++: Deep hierarchical feature learning on point sets in a metric space," Advances in Neural Information Processing Systems 30, 2017.