• Title/Summary/Keyword: 2D g-Navier-Stokes equations

Search Result 25, Processing Time 0.025 seconds

DERIVATION OF THE g-NAVIER-STOKES EQUATIONS

  • Roh, Jaiok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.213-218
    • /
    • 2006
  • The 2D g-Navier-Stokes equations are a certain modified Navier-Stokes equations and have the following form, $$\frac{{\partial}u}{{\partial}t}-{\nu}{\Delta}u+(u{\cdot}{\nabla})u+{\nabla}p=f$$, in ${\Omega}$ with the continuity equation ${\nabla}{\cdot}(gu)=0$, in ${\Omega}$, where g is a suitable smooth real valued function. In this paper, we will derive 2D g-Navier-Stokes equations from 3D Navier-Stokes equations. In addition, we will see the relationship between two equations.

  • PDF

THE GLOBAL ATTRACTOR OF THE 2D G-NAVIER-STOKES EQUATIONS ON SOME UNBOUNDED DOMAINS

  • Kwean, Hyuk-Jin;Roh, Jai-Ok
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.731-749
    • /
    • 2005
  • In this paper, we study the two dimensional g-Navier­Stokes equations on some unbounded domain ${\Omega}\;{\subset}\;R^2$. We prove the existence of the global attractor for the two dimensional g-Navier­Stokes equations under suitable conditions. Also, we estimate the dimension of the global attractor. For this purpose, we exploit the concept of asymptotic compactness used by Rosa for the usual Navier-Stokes equations.

GEOMETRY OF L2(Ω, g)

  • Roh, Jaiok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.283-289
    • /
    • 2006
  • Roh[1] derived 2D g-Navier-Stokes equations from 3D Navier-Stokes equations. In this paper, we will see the space $L^2({\Omega},\;g)$, which is the weighted space of $L^2({\Omega})$, as natural generalized space of $L^2({\Omega})$ which is mathematical setting for Navier-Stokes equations. Our future purpose is to use the space $L^2({\Omega},\;g)$ as mathematical setting for the g-Navier-Stokes equations. In addition, we will see Helmoltz-Leray projection on $L^2_{per}({\Omega},\;g)$) and compare with the one on $L^2_{per}({\Omega})$.

  • PDF

STABILIZATION OF 2D g-NAVIER-STOKES EQUATIONS

  • Nguyen, Viet Tuan
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.819-839
    • /
    • 2019
  • We study the stabilization of 2D g-Navier-Stokes equations in bounded domains with no-slip boundary conditions. First, we stabilize an unstable stationary solution by using finite-dimensional feedback controls, where the designed feedback control scheme is based on the finite number of determining parameters such as determining Fourier modes or volume elements. Second, we stabilize the long-time behavior of solutions to 2D g-Navier-Stokes equations under action of fast oscillating-in-time external forces by showing that in this case there exists a unique time-periodic solution and every solution tends to this periodic solution as time goes to infinity.

PULLBACK ATTRACTORS FOR 2D g-NAVIER-STOKES EQUATIONS WITH INFINITE DELAYS

  • Quyet, Dao Trong
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.519-532
    • /
    • 2016
  • We consider the first initial boundary value problem for the 2D non-autonomous g-Navier-Stokes equations with infinite delays. We prove the existence of a pullback $\mathcal{D}$-attractor for the continuous process associated to the problem with respect to a large class of non-autonomous forcing terms.

FINITE ELEMENT ANALYSIS FOR A MIXED LAGRANGIAN FORMULATION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Kim, Hong-Chul
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.87-118
    • /
    • 1997
  • This paper is concerned with a mixed Lagrangian formulation of the wiscous, stationary, incompressible Navier-Stokes equations $$ (1.1) -\nu\Delta u + (u \cdot \nabla)u + \nabla_p = f in \Omega $$ and $$ (1.2) \nubla \cdot u = 0 in \Omega $$ along with inhomogeneous Dirichlet boundary conditions on a portion of the boundary $$ (1.3) u = ^{0 on \Gamma_0 _{g on \Gamma_g, $$ where $\Omega$ is a bounded open domain in $R^d, d = 2 or 3$, or with a boundary $\Gamma = \partial\Omega$, which is composed of two disjoint parts $\Gamma_0$ and $\Gamma_g$.

  • PDF

ASYMPTOTIC BEHAVIOR OF STRONG SOLUTIONS TO 2D g-NAVIER-STOKES EQUATIONS

  • Quyet, Dao Trong
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.505-518
    • /
    • 2014
  • Considered here is the first initial boundary value problem for the two-dimensional g-Navier-Stokes equations in bounded domains. We first study the long-time behavior of strong solutions to the problem in term of the existence of a global attractor and global stability of a unique stationary solution. Then we study the long-time finite dimensional approximation of the strong solutions.

IMPLEMENTATION OF IMMERSED BOUNDARY METHOD TO INCOMPRESSIBLE NAVIER-STOKES SOLVER USING SIMPLE ALGORITHM (SIMPLE Algorithm기반의 비압축성 Navier-Stokes Solver와 Immersed Boundary Method)

  • Kim, G.H.;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.397-403
    • /
    • 2010
  • The Immersed boundary method(IBM) is one of CFD techniques which can simulate flow field around complex objectives using simple Cartesian grid system. In the previous studies the IBM has mostly been implemented to fractional step method based Navier-Stokes solvers. In these cases, pressure buildup near IB was found to occur when linear interpolation and stadard mass conservation is used and the interpolation scheme became complicated when higher order of interpolation is adopted. In this study, we implement the IBM to an incompressible Navier-Stokes solver which uses SIMPLE algorithm. Bi-linear and quadratic interpolation equations were formulated by using only geometric information of boundary to reconstruct velocities near IB. Flow around 2D circular cylinder at Re=40 and 100 was solved by using these formulations. It was found that the pressure buildup was not observed even when the bi-linear interpolation was adopted. The use of quadratic interpolation made the predicted aerodynamic forces in good agreement with those of previous studies.

  • PDF

The Inverse Design Technique of Propeller Blade Sections Using the Modified Garabedian-McFadden Method (Modified Garabedian-McFadden 방법을 이용한 프로펠러 날개 단면의 역설계 기법)

  • C.M. Jung;J.K. Cho;W.G. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.28-36
    • /
    • 1999
  • An efficient inverse design method based on the MGM(Modified Garabedian-McFadden) method has been developed. The 2-D Navier-Stokes equations are solved for obtaining the surface pressure distributions and coupled with the MGM method to perform the inverse design. The MGM method is a residual-correction technique, in which the residuals are the difference between the desired and the computed pressure distribution. The developed code was applied to several airfoil shapes and the propeller. It has been found that they are well converged to their targeting shapes.

  • PDF

IMPLEMENTATION OF IMMERSED BOUNDARY METHOD TO INCOMPRESSIBLE NAVIER-STOKES SOLVER USING SIMPLE ALGORITHM (SIMPLE Algorithm기반의 비압축성 Navier-Stokes Solver를 이용한 Immersed Boundary Method의 적용)

  • Kim, G.H.;Park, S.O.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.44-53
    • /
    • 2012
  • Immersed boundary method(IBM) is a numerical scheme proposed to simulate flow field around complex objectives using simple Cartesian grid system. In the previous studies, the IBM has mostly been implemented to fractional step method based Navier-Stokes solvers. In this study, we implement the IBM to an incompressible Navier-Stokes solver which uses SIMPLE algorithm. The weight coefficients of the bi-linear and quadratic interpolation equations were formulated by using only geometric information of boundary to reconstruct velocities near IB. Flow around 2D circular cylinder at Re=40 and 100 was solved by using these formulations. It was found that the pressure buildup was not observed even when the bi-linear interpolation was adopted. The use of quadratic interpolation made the predicted aerodynamic forces in good agreement with those of previous studies. For an analysis of moving boundary, we smulated an oscillating circular cylinder with Re=100 and KC(Keulegan-Carpenter) number of 5. The predicted flow fields were compared with experimental data and they also showed good agreements.