• Title/Summary/Keyword: 2D fluorescence spectra

Search Result 37, Processing Time 0.024 seconds

Application of Principal Component Analysis and Self-organizing Map to the Analysis of 2D Fluorescence Spectra and the Monitoring of Fermentation Processes

  • Rhee, Jong-Il;Kang, Tae-Hyoung;Lee, Kum-Il;Sohn, Ok-Jae;Kim, Sun-Yong;Chung, Sang-Wook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.432-441
    • /
    • 2006
  • 2D fluorescence sensors produce a great deal of spectral data during fermentation processes, which can be analyzed using a variety of statistical techniques. Principal component analysis (PCA) and a self-organizing map (SOM) were used to analyze these 2D fluorescence spectra and to extract useful information from them. PCA resulted in scores and loadings that were visualized in the score-loading plots and used to monitor various fermentation processes with recombinant Escherichia coli and Saccharomyces cerevisiae. The SOM was found to be a useful and interpretative method of classifying the entire gamut of 2D fluorescence spectra and of selecting some significant combinations of excitation and emission wavelengths. The results, including the normalized weights and variances, indicated that the SOM network is capable of being used to interpret the fermentation processes monitored by a 2D fluorescence sensor.

Photophysical Behaviors of Biphenylcarboxylic Acids in Various Solvents; Excited-State Geometry Change and Intramolecular Charge Transfer

  • Yoon Minjoong;Cho Dae Won;Lee Jae Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.613-620
    • /
    • 1992
  • The solvent-dependent photophysical properties of 2-biphenylcarboxylic acid (2BPCA) and 4-biphenylcarboxylic acid(4BPCA), which have a pre-twisted conformation in the ground state, have been investigated. The fluorescence spectra of 4BPCA show vibrational structure with a non-mirror image to the absorption spectra in nonpolar solvent while those of 2BPCA show no structure even in nonpolar solvents. As the solvent polarity increases, the fluorescence spectra become diffuse and broad with a strong red shift resulting in the large Stokes shift. The large fluorescence Stokes shift of BPCA's in polar solvent is also partially due to an intramolecular charge transfer (ICT) interaction in the excited state, as demonstrated by the large dipole moment in the excited state (7.6-10.6 D). The fluorescence decay behaviors of BPCA's (decay-times and their pre-exponential factors) also depend on solvent polarity in agreement with the solvent-dependent properties of the steady-state fluorecence. The data have been discussed in terms of change in the excited-state potential energy surface with respect to change of the dihedral angle of biphenyl moiety.

Analysis of Two-Dimensional Fluorescence Spectra in Biotechnological Processes by Artificial Neural Networks I - Classification of Fluorescence Spectra using Self-Organizing Maps - (인공신경망에 의한 생물공정에서 2차원 형광스펙트럼의 분석 I - 자기조직화망에 의한 형광스펙트럼의 분류 -)

  • Lee Kum-Il;Yim Yong-Sik;Kim Chun-Kwang;Lee Seung-Hyun;Chung Sang-Wook;Rhee Jong Il
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.291-298
    • /
    • 2005
  • Two-dimensional (2D) spectrofluorometer is often used to monitor various fermentation processes. The change in fluorescence intensities resulting from various combinations of excitation and emission wavelengths is investigated by using a spectra subtraction technique. But it has a limited capacity to classify the entire fluorescence spectra gathered during fermentations and to extract some useful information from the data. This study shows that the self-organizing map (SOM) is a useful and interpretative method for classification of the entire gamut of fluorescence spectral data and selection of some combinations of excitation and emission wavelengths, which have useful fluorometric information. Some results such as normalized weights and variances indicate that the SOM network is capable of interpreting the fermentation processes of S. cerevisiae and recombinant E. coli monitored by a 2D spectrofluorometer.

Chemometric Analysis of 2D Fluorescence Spectra for Monitoring and Modeling of Fermentation Processes (생물공정 모니터링 및 모델링을 위한 2차원 형광스펙트럼의 다변량 분석)

  • Kang Tae-Hyoung;Sohn Ok-Jae;Kim Chun-Kwang;Chung Sang-Wook;Rhee Jong-Il
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.59-67
    • /
    • 2006
  • 2D spectrofluorometer produces many spectral data during fermentation processes. The fluorescence spectra are analyzed using chemometric methods such as principal component analysis (PCA), principal component regression (PCR) and partial least square regression (PLS). Analysis of the spectral data by PCA results in scores and loadings that are visualized in score-loading plots and used to monitor a few fermentation processes by S. cerevisae and recombinant E. coli. Two chemometric models were established to analyze the correlation between fluorescence spectra and process variables using PCR and PLS, and PLS was found to show slightly better calibration and prediction performance than PCR.

Picosecond Photoionization Processes of N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD) in Water

  • Lee, Min-Yung;Jang, Du-Jeon;Kim, Dong-Ho;Lee, Sun-Sook;Boo, Bong-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.17-20
    • /
    • 1992
  • Photoionization processes of TMPD in $H_2O$ and $D_2O$ were studied, by measuring steady-state absorption, emission, fluorescence excitation spectra, and fluorescence lifetimes on picosecond time scale. The steady-state absorption spectra showed that there exists a cation-ion pair (Wurster's Blue) in $H_2O$ and in $D_2O$ in the electronic ground state. Temperature and excitation wavelength dependence were also studied and the results show that the photoionization reaction in water is an activated process and the fluorescence lifetime is independent of the vibrational excess energy in the uv excitation range of 283-310 nm.

Monitoring of Biological Processes by 2-dimensional Fluorescence Sensor (2차원 형광센서에 의한 생물공정의 모니터링)

  • 이종일;정상윤;서국화
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.493-499
    • /
    • 2001
  • This work presented the monitoring technique of biological processes by a 2-dimensional fluorescence sensor. The 2-dimensional fluorescence sensor can be used to monitor some important variable during cultivation processes simultaneously. In this study we have monitored fermentation processes of a few microorganisms such as recombinant E.coli, A. terreus and T. vulgaris. and investigated the change of the fluorescence spectra in the fermentation processes qualitatively. The 2-dimensional fluorescence sensor can be also used to monitor biochemical reactions and separation processes and applied for the optimization of biological processes.

  • PDF

Photoinhibition Induced Alterations in Energy Transfer Process in Phycobilisomes of PS II in the Cyanobacterium, Spirulina platensis

  • Kumar, Duvvuri Prasanna;Murthy, Sistla D.S.
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.644-648
    • /
    • 2007
  • Exposure of algae or plants to irradiance from above the light saturation point of photosynthesis is known as high light stress. This high light stress induces various responses including photoinhibition of the photosynthetic apparatus. The degree of photoinhibition could be clearly determined by measuring the parameters such as absorption and fluorescence of chromoproteins. In cyanobacteria and red algae, most of the photosystem (PS) II associated light harvesting is performed by a membrane attached complex called the phycobilisome (PBS). The effects of high intensity light (1000-4000 ${\mu}mol$ photons $m^{-2}s^{-1}$) on excitation energy transfer from PBSs to PS II in a cyanobacterium Spirulina platensis were studied by measuring room temperature PC fluorescence emission spectra. High light (3000 ${\mu}mol$ photons $m^{-2}s^{-1}$) stress had a significant effect on PC fluorescence emission spectra. On the other hand, light stress induced an increase in the ratio of PC fluorescence intensity of PBS indicating that light stress inhibits excitation energy transfer from PBS to PS II. The high light treatment to 3000 ${\mu}mol$ photons $m^{-2}s^{-1}$ caused disappearance of 31.5 kDa linker polypeptide which is known to link PC discs together. In addition we observed the similar decrease in the other polypeptide contents. Our data concludes that the Spirulina cells upon light treatment causes alterations in the phycobiliproteins (PBPs) and affects the energy transfer process within the PBSs.

Analysis of Two-Dimensional Fluorescence Spectra in Biotechnological Processes by Artificial Neural Networks II - Process Modeling using Backpropagation Neural Network - (인공신경망에 의만 생물공정에서 2차원 영광스펙트럼의 분석 II - 역전파 신경망에 의한 공정의 모델링 -)

  • Lee Kum-Il;Yim Yong-Sik;Sohn Ok-Jae;Chung Sang-Wook;Rhee Jong Il
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.299-304
    • /
    • 2005
  • A two-dimensional (2D) spectrofluorometer was used to monitor various fermentation processes with recombinant E. coli for the production of 5-aminolevulinic acid (ALA). The whole fluorescence spectral data obtained during a process were analyed using artificial neural networks, i.e. self-organizing map (SOM) and feedforward backpropagation neural network (BPNN).Based on the classified fluorescence spectra a supervised BPNN algorithm was used to predict some of the process parameters. It was also shown that the BPNN models could elucidate some sections of the process performance, e.g. forecasting the process performance.

The Application of a Laser to the Chemical Characterization of Radionuclides

  • Park, Y.J.;Park, K.K.;M/Y. Suh;S.K. Yoon;Park, Y.S.;Kim, D.Y.;Kim, W.H.
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.446-456
    • /
    • 2000
  • Laser induced photoacoustic, fluorescence, and photon correlation spectroscopies were applied to the chemical characterization of radionuclides in connection with the radiowaste treatment and disposal. Their measuring principles and systems were briefly described together with their advantages over conventional spectroscopies. Also, other applications of lasers are introduced. Laser induced photoacoustic spectra were measured for a P $r^{3+}$ solution with a very low molar absorptivity. The detection sensitivity was 4.3 $\times$10$^{-5}$ c $m^{1}$ and was 100 times better than that of a UV/VIS spectrophotometer. The Eu(III) excitation spectra($^{7}$ $F_{0}$ longrightarrow $^{5}$ $D_{0}$ transition) were measured for Eu(III)-phthalate complexes using laser fluorescence spectroscopy, showing that only two species, 1:1 and 1:2 complexes, are present in the Eu(III)-phthalic acid system. The size and size distribution for colloidal humic acids and Eu(III)-humate colloids was determined using photon correlation spectroscopy. The presence of Eu(III) enhanced the aggregation of humic acids.s.

  • PDF

Effect of Molecular Weight of Chitosan on Flocculation of Suspended Solids in Rhodamine 6G-Sodium Dodecyl Sulfate System (키토산 분자량에 따른 Rhodamine 6G-Sodium Dodecyl Sulfate계의 응집효과에 관한 연구)

  • Kim, Sung Hyun;Nah, Jae Woon;Oh, Jeong Sun;Song, Ki Dong
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.672-678
    • /
    • 1998
  • Chitin was extracted from crab shell of Portuns triberculatus and deacethylated to yield chitosan with various molecular weights. The absorption and the fluorescence spectra of Rhodamine 6G(Rh 6G)-sodium dodecyl sulfate(SDS) and Rh 6G-chitosan systems were obtained. From the spectra, we observed that the absorption and the fluorescence intensity of Rh 6G-SDS system decreased when S/D(the concentration of SDS to that of Rh 6G ratio) was below or at 32, while they increased when S/D was above 32. From the suspended solid(SS) removal rate and the transmittance of Rh 6G-SDS-chitosan system, we found that when S/D ratio was 32 its flocculating behaviour was much stronger than Rh 6G-SDS system. As the concentration and the molecular weight of chitosan increased, we also found that S/D range was extended from 32 to 100. With increasing the molecular weight of chitosan, the SS removal rate increased around pH 2~9 but decreased remarkably at pH>12.

  • PDF