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Abstract 2D fluorescence sensors produce a great deal of spectral data during fermentation
processes, which can be analyzed using a variety of statistical techniques. Principal component
analysis (PCA) and a self-organizing map (SOM) were used to analyze these 2D fluorescence
spectra and to extract useful information from them. PCA resulted in scores and loadings that
were visualized in the score-loading plots and used to monitor various fermentation processes
with recombinant Escherichia coli and Saccharomyces cerevisiae. The SOM was found to be a
useful and interpretative method of classifying the entire gamut of 2D fluorescence spectra and
of selecting some significant combinations of excitation and emission wavelengths. The results,
including the normalized weights and variances, indicated that the SOM network is capable of
being used to interpret the fermentation processes monitored by a 2D fluorescence sensor.
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INTRODUCTION

Fluorescence sensors have been widely used to monitor
and control biotechnological processes [1-3]. In particu-
lar, 2D fluorescence sensors, which permit the simulta-
neous scanning of a whole range of excitation (250~650
nm) and emission (280~700 nm) wavelengths, have re-
cently been used to monitor a variety of fermentation
processes with microorganisms such as Enterobacter
aerogenes, Pseudomonas fluorescens, Escherichia coli,
and Claviceps purpurea [4-8]. Some significant correla-
tions of the fluorescence spectra with process variables,
i.e. the pH, cell mass, and the concentrations of the sub-
strate and product, have also been found using various
types of methods, such as the spectra subtraction and
multivariate calibration methods [9-14], which include
artificial neural networks [9] and partial least square re-
gression analysis (PLS) [10,11].

Principal component analysis (PCA) is one of the most
frequently used chemometric methods with spectroscopic
data. This method allows all of the spectroscopic data to
describe large amounts of data sets synthetically with the
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minimum loss of information [15,16]. PCA makes it pos-
sible to extract pertinent information related to the prop-
erties of the system being investigated. The investigation
of the structural changes in milks [17], the analysis of the
excitation-emission fluorescence matrices of olive oils
[18] and the reduction of the dimensions of the fluores-
cence spectra used to monitor waste water treatment
processes [19] are all examples of information that can
be obtained using PCA. To our knowledge, this is the first
study dealing with the monitoring of fermentation proc-
esses based on the analysis of 2D fluorescence spectra by
PCA.

The self-organizing map (SOM), which belongs to the
domain of unsupervised neural network algorithms, is
considered to be a nonlinear surrogate to PCA. It has
proved to be quite a simple applicative algorithm and an
excellent tool for the nonlinear mapping of vectorial data
in various spectrometers. The SOM has been used to
cluster NMR spectra [20] and to visualize the spectro-
scopic data obtained using ion mobility spectrometry in a
yeast fermentation process [21]. It has also been applied
to the classification of chromatographic systems [22]. In
our previous study the SOM technique was used to clas-
sify the 2D fluorescence spectra produced in various fer-
mentation processes and to analyze the processes qualita-
tively [23].
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Table 1. Operating conditions of the four fermentation processes
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FmPro1 FmPro2 FmPro3 FmPro4
Microorganism recomb. E. coli recomb. E. coli S. cerevisiae S. cerevisiae
Culture medium MS8 LB SM SM
Process operating conditions pH 6.2 pH 6.5 pH 5.5 pH 5.5
37°C 37°C 30°C 30°C
1 vvm 1 vwm 1 vwm 1 vwm
450 rpm 450 rpm 350 rpm 350 rpm

Addition of other components Succinate, LA

Glycine, IPTG

Succinate, LA

Glut+Gly (at 0 h),
Cys (at 11 h)

Glut+Gly (at 11 h),

Glycine Cys (at 11 h)

These two methods (PCA & SOM) are qualitative
analysis methods for spectroscopic data. One or both of
these methods have been used to correlate spectral data
to some parameters. However, a comparison of the two
methods in the analysis of 2D fluorescence spectra has
not been performed before. Therefore, this study focused
on the application of the PCA and SOM methods to the
analysis of 2D fluorescence spectra and to the monitoring
of fermentation processes with recombinant E. coli and
Saccharomyces cerevisiae in an unsupervised manner.

MATERIALS AND METHODS
Fermentation Processes with a 2D Fluorescence Sensor

Recombinant E. coli BL21(DE3)pLysS (Invitrogen Co.,
USA) harboring the plasmid pFLS 45 with the lac pro-
moter was used to produce extracellular 5-aminolevulinic
acid (ALA) in a bioreactor system. For the fermentation
of recombinant E. coli, chemically defined minimal me-
dium [24] and LB medium were used with two precur-
sors (succinic acid and glycine) for ALA and an inhibitor
(levulinic acid, LA) of ALA dehydratase. The details of
the analysis of the cell mass, ALA, substrate and organic
acids, etc., were described in our previous paper [24].

Yeast S. cerevisiae ATCC7754 (American Type Cell
Collections, USA) was employed for the production of
intracellular glutathione (GSH). A chemically defined
medium (SM) with different glucose concentrations was
used with three precursors (glutamic acid, cysteine, and
glycine) for GSH [25]. The concentration of intracellular
GSH was determined using the method reported by Ti-
etze [26]. Cysteine was also analyzed using a colorimet-
ric method based on the reaction between copper ions
(I), iron ions (I1I), and 1.10-phenmonohydrate [27].

Four fermentation processes with recombinant E. coli
and S. cerevisiage were monitored on-line with a 2D fluo-
rescence sensor. The operating conditions of each fer-
mentation process are listed in Table 1.

The 2D fluorescence sensor used in this study consisted
of a spectrofluorometer (Model F-4500, Hitachi Co., Ja-
pan) and a 2-m bifurcated liquid light conductor (Lumatek
GmbH, Germany) which was connected to the quartz
window in the 19-mm electrode port of a stainless steel
bioreactor system in conjunction with various sensors,

such as pH- and dissolved oxygen (DO)-meters and an
0,-/CO,-analyzer. A computer using homemade software
was used for the configuration and control of the 2D fluo-
rescence sensor, data acquisition, and for the direct display
of the monitoring results and data saving, The measure-
ment conditions of the 2D fluorescence sensor were as
follows: scanning speed, 500 nm/sec; excitation and emis-
sion slits, 10 nm; excitation wavelength range, 250~650
nm; emission wavelength range, 280~650 nm. A scan of
the whole spectrum with these parameters took 90 sec.

Principal Component Analysis (PCA)

PCA is used to reduce the dimensionality of multivari-
ate data and to transform interdependent variables into
significant and independent components [28].

The entire set of fluorescence spectra gathered during
fermentation can be structured in sample numbers, i.e.
the fermentation time and combinations of the excitation
and emission wavelengths (CWLs). PCA decomposes a
given spectral data matrix (X) as the sum of the outer
product of the vectors q, and p, plus a residual matrix, E,
using the following equation:

X:iqap:+E=QPT+E (1)

a=li

where Q is known as the scores matrix and contains in-
formation regarding the relationship between the samples.
P stands for the loading matrix and includes information
regarding the relationship between the variables. PCA,
which uses far fewer factors than the original variables
with no significant loss of information, was performed
using code written in MATLAB software (vers.6.1, The
MathWorks Inc., USA) [29].

Self-organizing Map (SOM)

The SOM projects high-dimensional data sets onto a
space of lower dimension, while preserving the topologi-
cal relationships of the input data sets. All of the fluores-
cence spectra collected during fermentation were pro-
jected onto a one-dimensional network consisting of the
fermentation time, and the number of neurons in the
output layer was equal to the number classified in the
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spectral data [23].

To classify the total fluorescence spectra using the
SOM algorithm, the spectral data were first transformed
into one-dimensional input data sets according to the
CWLs. All of the spectral data so transformed were in-
troduced into the node of the input layer in the vector
form and then sent through the SOM network. Each
neuron of the network computed the Euclidean distance
between a weight vector and an input vector. The output
neurons in the output layer are usually arranged into a
two-dimensional grid. Among all of the output neurons,
the best matching unit (BMU) with the minimum dis-
tance between the weight vectors and the input vectors
was chosen. For the BMU and its neighborhood neurons,
the weight vectors were updated by the SOM learning
rule, and each spectral data point for a given class was
projected onto the data sets arranged according to the
fermentation time after a learning step. In this way, the
topological relationships hidden in the large amounts of
input data sets were classified and visualized in a class
distribution card.

The optimal number of classes in a given class distribu-
tion card was determined by estimating the degree of
scattering of the fluorescence intensities of all the spectral
components in the corresponding class by computing the
time-dependent variance of the fluorescence intensities of
all of the spectral components in the class [23].

The mean variance of the fluorescence intensities for
all of the spectral components of all of the classes in a
distribution card usually decreases with increasing num-
ber of classes and can be used as a criteria for determin-
ing the optimal number of classes. That is, when the dif-
ference between the mean variances of two consecutive
classes is less than 5%, the lower class number is selected
as the optimal number of classes, by means of which the
whole spectral data can be classified [23].

The SOM algorithm was also implemented using the
MATLAB Neural Network Toolbox (vers.6.1, The Math
Works Inc.) [29].

RESULTS AND DISCUSSION

Fermentation Processes with Recombinant £, co/i and
S. cerevisiae

To produce extracellular ALA using recombinant E.
coli and intracellular GSH using S. cerevisiae, a number
of fermentations were performed in a bioreactor with
various sensors, including a 2D fluorescence sensor. A
large amount of on- and off-line measurement data, in-
cluding the 2D fluorescence spectra, was collected during
the fermentation process.

Fig. 1 shows the characteristics of cell growth and ALA
production with recombinant E. coli in FmProl and
FmPro2, i.e. in different fermentation media with the
addition of various precursors and inducers [24]. Re-
combinant E. coli usually grows faster in a complex me-
dium (e.g. LB medium) than in a chemically defined me-
dium (e.g. MS8 medium) [30]. In Fig. 1, the dried cell
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Fig. 1. On- and off-line measurement data of two fermentation
processes with recombinant E. coli: FmPro1 data for DCW (@),
ALA (W), glucose (A), CO, (—), and DO (—); FmPro2 data
for DCW (O), ALA (), CO, (---), and DO (---).

weight (DCW) and concentration of carbon dioxide
(CO,) reached their maximum values at 18.0 and 17.5 h
in FmProl respectively, while they reached their maxi-
mum values at 8.5 and 4.7 h in FmPro2. In FmProl, the
glucose concentration reached zero at 15.0 h. The DO
concentration decreased for up to 16.0 h in FmProl,
whereas it decreased for up to 4.7 h in FmPro2. The
concentration of extracellular ALA increased during the
fermentation in FmPro1 and reached its maximum value
at the end of the fermentation, i.e. at 25.0 h, while it
reached its maximum value at 12.5 h in FmPro2.

During the fermentation of S. cerevisiae, cysteine was
added to the processes at 11.0 h, whereas glutamic acid
and glycine were added to the bioreactor at the beginning
of the fermentation in FmPro3 and at 11.0 h in FmPro4,
respectively [25]. The cell growth and GSH production
in FmPro3 and FmPro4 are shown in Fig. 2. After 10.5 h,
the DCW in FmPro3 was higher than that in FmPro4,
because a higher concentration of glucose (20 g/L) was
added in FmPro3 than in FmPro4 (5 g/L). The glucose
concentration in FmPro3 decreased very rapidly and its
concentration reached zero after 10.5 h. However, a
lower concentration of cysteine (8 mM) was introduced
into the FmPro3 than into the FmPro4 (16 mM). Higher
amounts of intracellular GSH were produced in FmPro3
than in FmPro4, but its maximum concentration was
reached at 22.0 h in both processes. The concentrations
of CO, and O, in the exhaust gas of the two processes
were maximal and minimal at 10.5 h, respectively, al-
though their concentrations were quite different.

The fluorescence spectra usually depend on such fac-
tors as the fermentation medium and process operating
parameters. Figs. 3A and B show two of the fluorescence
spectra recorded during the fermentation process, i.e. the
fluorescence spectra of FmProl at 10.0 and 17.0 h. The
change in the fluorescence intensity was also visualized
by subtracting one fluorescence spectrum (t = 10 h)
from the other (t = 17 h). There was a large difference in
the fluorescence intensities (FS,;, — FS,y) in the regions
of NAD(P)H (360 nm (ex)/440 nm (em), which is used
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Fig. 2. On- and off-line measurement data of two fermentation
processes with S. cerevisiae: FmPro3 data for DCW (@), GSH
(W), glucose (&), CO, (—), O, (—), and cysteine (£); FmPro4
data for DCW (O), GSH (), CO, (---), O, (---), and cys-
teine (y).

as an indicator of the metabolic activity) and of EGFP
(470 nm (ex)/520 nm (em), which is used as an indica-
tor of the ALA production) between 10.0 and 17.0 h,
because the cells were in the exponential growth phase
and produced ALA. However, no distinct differences in
the fluorescence intensities were visualized in the other
fluorescence regions, so some available spectra could not
be ascertained from large amounts of spectral data by the
spectra subtraction technique [9,23]. Therefore, it is nec-
essary to apply a holistic approach such as PCA and
SOM to the interpretation of the overall fluorescence
spectra.

Analysis of 2D Fluorescence Spectra by PCA and SOM

The large volume of 2D fluorescence spectra produced
during fermentation either can be reduced in dimension
by PCA or clustered into several classes by the SOM
method. The score and loading plots produced by the
PCA, as well as the class distribution card produced by
the SOM, do not only help to understand the relationship
between each fluorescence spectrum and the cellular
states, but also provide some qualitative information on
the fermentation process.

PCA

After filtering out some of the light scattering data, the
spectral data can be reduced and used as the column of
the fluorescence spectral matrix (X) in Eq. (1). The
whole spectral matrix can then be decomposed into the
score and loading data matrices. The number of columns
in the fluorescence spectral matrix, i.e. 378 CWLs in this
study, can affect the computation time of the data matrix
and the amount of information. Therefore, a total of 189
CWLs, which were selected simply by using a scan inter-
val of 20 nm, was employed to calculate the variance
which can be captured by each PC. In the case of
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Fig. 3. Fluorescence spectra at 10.0 h (a) and at 17.0 h (b) and
difference Difference in fluorescence spectra between 10.0 and
17.0 h in the case of FmProl (c).

FmProl, PC1, PC2, PC3, PC4, and PC5 captured 58.73,
4.97, 1.94, 0.84, and 0.79% of the total variances in the
entire fluorescence spectra, respectively.

Figs. 4A and B show the score and loading plots of the
PCA for FmProl, respectively. The score plot contains
426 score data concerning the fermentation time and can
be used to interpret the tendency of the fermentation
process. For example, in the score plots of PC1 and PC2,
the increase in the scores of PC1 and PC2 at the begin-
ning of the fermentation represents the start of cell
growth. The small increase and saturation in the scores of
PC2 between 6.0 h (PC1 = -10.353; PC2 = 1.5907)
and 15.0 h (PC1 = 9.8175; PC2 = 4.5761) may result
from either the exponential growth of the cells or the fast
consumption of the substrate.

The loading data are normalized between +1 and -1
and presented in the form of a one dimensional loading
spectrum, i.e. the loading value vs. CWL selected using a
scan interval of 20 nm. The loading values for the PCs
indicate the importance of each CWL in the fermentation
process. That is, those CWLs having a high loading value
(e.g. over + 0.09) show a large change in the fluorescence
intensity as a function of the fermentation time, so that
monitoring the process using the 2D fluorescence sensor
based on these CWLs would provide more information
on the cellular behavior. Many CWLs for PC1 have load-
ing values of over 0.09, especially in the spectral regions
of EGFP (470 nm (ex)/520 nm (em)) and NAD(P)H
(360 nm (ex)/440 nm (em)), as shown in Fig. 4C, and
provide some useful information on the cell growth and
ALA production. Some high positive loading values are
also observed for PC2 in the spectral regions of the pro-
teins (270~290 nm (ex)/370~390 nm (em)), which
provides us with some information on the change in the
cellular proteins. PC3 has high positive loading values in
the spectral region of amino acids such as tryptophan
(250~270 nm (ex)/290~310 nm (em)) and negative
loading values in the region of the proteins (290~310
nm (ex)/370~390 nm (em)) (Fig. 4C) [8]. In the bot-
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Fig. 4. (A) Score plots, (B) loading plots, and (C) CWLs (77 CWLs with loading values over +0.09) of PC1, PC2, and PC3 for

FmProl.

tom half of the fluorescence spectrum in Fig. 4C, PC2
and PC3 have a few CWLs with high loading values of
over +0.09, due to the influence of the scattered light
caused by the monochrometer of the 2D fluorescence
spectroscopy. These CWLs should be subtracted when
analyzing the fluorescence spectra. The CWL whose
loading value for the PCs is very low or zero, provides
little information on the behavior of a process, so must

not be selected to monitor a fermentation process on-line.

As a result, the fluorescence spectra collected during fer-
mentation may be effectively analyzed by the PCA using
77 of the 189 CWLs selected simply based on a scan in-
terval of 20 nm.

SOM

In FmPro3, the whole range of fluorescence spectra
were collected during the fermentation with S. cerevisiae
and clustered into several classes. After calculating the
mean variance, the optimal number of classes was found
to be 5 [23]. Fig. 5 shows the class distribution card for
the 5 classes, including the central regions as well as the
time courses of the normalized weights and the variances
of each class. The CWLs within 20% of the largest ele-
ments in each class are represented as the central regions

of each class. That is, the high values of the central re-
gions showed areas where large changes in the time-
dependent spectral data can be predicted. In Fig. 5A, the
distribution card of the 5 classes had 27 central regions
for class 1, 19 for class 2, 25 for class 3, 10 for class 4,
and 17 for class 5.

The trends for the normalized weights may give some
qualitative information about the cellular metabolism and
characteristics of the fermentation process, such as the
substrate consumption, the production of metabolites and
enzymes, or the introduction of some components into
the bioreactor [31]. In Fig. 5B, the time course of the
normalized weight of class 1 in FmPro3 may represent
the change in the concentration of cysteine due to its ad-
dition at 11.0 h, when compared with the on- and off-line
data in Fig. 2. The change in the variances according to
time, i.e. the degree of scattering of the fluorescence in-
tensity of a class with regard to the fermentation time,
also provides some information about the fermentation
process. The change in the variances of class 3 is also
similar to that of the DCW in FmPro3 in Fig. 2.

Monitoring the Fermentation Processes

The analysis of 2D fluorescence spectra by PCA and
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SOM helps to monitor a fermentation process qualita-
tiveely on-line. Herein, four fermentation processes are
monitored based on the score plots of the PCs, as well as
the normalized weights and variances of the classes in a
given class distribution card in an unsupervised manner.

Fermentation Process 1 (FmPro1)

For FmProl, the score plots of the PCs produced by
the PCA shown in Fig. 4A and the normalized weight and
variances of the classes produced by the SOM shown in
Fig. 6 can be compared with the on- and off-line meas-
urement data shown in Fig. 1.

In the score plot of PC1 and PC2 in Fig. 4A, the scores
(426 data points) of PC1 increased with increasing fer-
mentation time until 18.0 h and decreased thereafter until
the end of the fermentation process. However, the scores
of PC2 increased from the beginning of the fermentation
process up to 15.0 h, decreased from 15.0 to 20.5 h and
then increased till the end of the fermentation process.
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The increase in the scores of PC1 and PC2 at the begin-
ning of the fermentation process were found to represent
the start of cell growth, when they were compared with
the on- and off-line data in Fig. 1. The small increase and
saturation in the scores of PC2 between 6.0 and 15.0 h
resulted from the exponential growth of the cells or the
fast consumption of the substrate. The increase in the
scores of PC2 between 12.5 and 15.0 h possibly reflected
the maximum cell growth rate and the start of CO, ac-
cumulation. The complete consumption of the substrate
was also reflected in the sharp decrease in the scores of
PC2 after 15.0 h. The decrease in the scores of PC1 be-
tween 18.0 and 25.6 h represented the stationary phase
of cell growth, and the change in the scores of PC2 at
20.5 h showed that some change in the CO, concen-
tration occurred due to the addition of IPTG [32].

The scores of PC1 and PC3 increased from the begin-
ning of the fermentation to 3.1 h, which represented the
lag phase. The decrease in the scores of PC3 from 3.1 to
12.2 h represented the exponential growth of the cells.
The increase in the scores of PC3 between 12.2 and 14.5
h also reflected the attainment of the maximum cell
growth rate and the start of CO, accumulation. After
15.1 h, a complex phenomenon was observed in the
score data of PC1 and PC3, due to various factors, in-
cluding the consumption of the substrate, the addition of
LA and IPTG.

PC2 and PC3 captured only 6.91% of the total vari-
ances in the entire fluorescence spectra and therefore
would be expected to explain very little of the characteris-
tics of the fermentation process. The scores of PC3 in the
score plot of PC2 and PC3 oscillated, so that it is difficult
to explain the process based on the measurement data in
Fig. 1.

The class distribution card of the 5 classes had 34 cen-
tral regions for class 1, 14 for class 2, 21 for class 3, 13
for class 4, and 16 for class 5. The time courses of the
normalized weights and the variances of some of the
classes in Fig. 6 were compared with the on- and off-line
measurement data in Fig. 1.

In Fig. 6, the time courses of the normalized weights of
classes 3 and 4 for which the spectral components agreed
well with the spectral region of NAD(P)H (data not
shown [18]), might be associated with the dried cell
weight (DCW), whereas the normalized weight of class 2
might be correlated with the courses of the ALA concen-
trations in Fig. 1. The steep increase in the variance of
class 1 after 20.0 h may result from the production of
various metabolites, such as acetic acid, or large amounts
of foam, and the addition of antifoam agents to the biore-
actor.

Fermentation Process 2 (FmPro2)

In the case of FmPro2, PC1, PC2, and PC3 captured
35.64, 25.43, and 2.27% of the total variances in the
entire fluorescence spectra, respectively. The score plots
of PC1, PC2, and PC3 in Fig. 7A can also be compared
with the on- and off-line measurement data shown in
Fig. 1.
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Fig. 6. Time courses of the normalized weights and the vari-
ances of some of the classes (Cl) for FmProl.

In the score plots of PC1 and PC2, the increase in the
scores of PC1 from the beginning of the fermentation
until 8.5 h represented the increase in DCW, i.e. cell
growth. Between 10.0 and 13.0 h the scores of PC2 de-
creased, whereas those of PC1 remained almost constant.
These trends represented the maximal concentration of
ALA in Fig. 1. The slow decrease in the scores of PCt
after 13.0 h indicated the slow degradation of ALA to
porphobilinogen (PBG).

The meaning of the score values of each PC in the
score plots of PC1 and PC3 after 5.6 h is not clear, due
to the complexity of cell metabolism, which includes cell
death and biosynthesis of the various amino acids. How-
ever, the fluctuation of the scores of PC3 between 4.7
and 5.6 h represented the two maximal peaks of the CO,
concentrations in the exponential growth phase of the
cells. The score values of PC2 and PC3 also reflected
some trends in the cell growth (DO, CO, efc.). That is,
the steep decrease of DO between 0.1 and 4.7 h corre-
sponded to the sharp increase in the scores of PC3, and
the decrease in the CO, concentrations after 5.6 h agreed
well with the decrease in the scores of PC3.

The cellular metabolism and biosynthesis of ALA might
be well explained through the change in the score values
of each PC in the score plots, if more on- and off-line
measurement data were to be obtained.

The entire range of fluorescence spectra in FmPro2
could also be classified into 8 classes. There were 13 cen-
tral regions for class 1, 14 for class 2, 5 for class 3, 12
for class 4, 5 for class 5, 18 for class 6, 11 for class 7,
and 20 for class 8.

The concentrations of ALA in Fig. 1 could be associ-
ated with the time courses of the normalized weights of
class 8 shown in Fig. 7B, for which some of the spectral
components lie in the fluorescence region of the EGFP
(470 nm (ex)/520 nm (em)). The time courses of the
normalized weights of class 7 corresponded to the changes
in DCW in Fig. 1. However, class 7 in the class distribu-
tion card (Figure not shown) does not belong to the fluo-
rescence region of NAD(P)H (360 nm (ex)/440 nm
(em)), and may be due to the degradation and bio-syn-
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thesis of some amino acids in the LB-complex medium.
The change in the variance of class 4, which lies in the
region of NAD(P)H, was associated with the time course
of CO, shown in Fig. 1.

Fermentation Process 3 (FmPro3) and 4 (FmPro4)

The score plots of the PCs in FmPro3 and FmPro4 are
shown in Fig. 8. The cell growth, as well as the difference
in the time of addition of the two amino acids (glutamic
acid and glycine) to the process, can be interpreted by
comparing the score plots of the two processes. Table 2
presents the total variances captured by the 5 PCs in both
processes.

From the score plots shown in Fig. 8A, the trends in
the score values of the PCs at the beginning of fermenta-
tion and at 11.0 h in FmPro3 were different from those in
FmPro4. Glutamic acid and glycine were added to
FmPro3 at the beginning of fermentation, whereas they
were added to FmPro4 at 11.0 h. This difference can be
observed in the change of the scores of PC1 and PC2 in
the score plots. The score values of PC1 and PC3 re-
flected the addition of cysteine to both processes at 11.0
h. In the score plots of PC1 and PC3, the increase in the
score values of PC3 starting from 11.0 h might also result
from the change from an oxidative to an oxidoreductive
metabolism [8], for example the conversion of glucose to
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Table 2. Total variances captured by 5 PCs in FmPro3 and
FmPro4 (%)

PC1 PC2 PC3 PC4 PC5
FmPro3 41.87 7.17 2.72 1.59 0.92
FmPro4 41.11 4.49 3.39 1.03 0.92

ethanol. The increase in the scores of PC3 starting from
35.0 h may represent the production of other metabolites
or the degradation of GSH within the cells, as shown in
Fig. 2.

In FmPro3, the difference in the mean variances be-
tween classes 5 and 6 was less than 5%, while the differ-
ence in the mean variances between classes 7 and 8 in
FmPro4 was less than 5%. Therefore, the fluorescence
spectra gathered in FmPro3 and FmPro4 were classified
into 5 and 7 classes, respectively. Class 1 (290~340 nm
(ex)/330~490 nm (em)) and class 3 (340~410 &
370~590 nm (ex)/380~460 & 560~650 nm (em)) in
FmPro3 have 52 central regions which capture more than
50% of the useful information about the process. How-
ever, in FmPro4, classes 5 and 6 within the wavelength
range of 340~560 nm (ex) and 400~640 nm (em) con-
tain about 43% of the biological and environmental in-
formation concerning the process.

The difference in the addition time of the two amino
acids can also be interpreted by comparing the normal-
ized weights of some of the classes in the class distribu-
tion cards of FmPro3 and FmPro4. In Fig. 8B, the nor-
malized weights of class 1 in FmPro3 and class 5 in
FmPro4 correspond well to the respective cell mass con-
centrations. The fluorescence region of NAD(P)H lay in
the regions of class 1 in FmPro3 and class 5 in FmPro4.
The sudden change in the normalized weights of class 5
in FmPro4 at 11.0 h might also correspond to the addi-
tion of the two amino acids. That is, the sudden decrease
may result from some metabolic change within the cells
due to the simultaneous addition of three amino acids to
FmPro4. The concentrations of cysteine added to
FmPro3 and FmPro4 at 11 h can also be interpreted by
analyzing the time courses of the variances in class 1 in
FmPro3 and class 3 in FmPro4.

In most previous studies, the large amounts of fluores-
cence spectra collected with a 2D fluorescence sensor
were analyzed by multivariate regression methods such as
partial least square regression [10-14,33]. For example, a
multivariate calibration method applying parallel factor
analysis (PARAFAC) was employed to quantify the anti-
inflammatory materials in biological samples, based on
2D fluorescence spectral data [33]. The process variables,
such as the cell mass and protein production were well
correlated with the fluorescence spectra in the fermenta-
tion processes of E. coli and 8. cerevisiae [13,14]. A
backpropagation neural network (BPNN) was also intro-
duced to interpret the highly complex fluorescence maps
obtained from complex bioprocesses [9] and to predict
the fermentation process of recombinant E. coli [29].
Although the multivariate calibration method and super-
vised neural networks have good accuracy and high pre-
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Fig. 8. (A) Score plots of PC1, PC2, and PC3 and (B) time
courses of the normalized weights and the variances of some of
the classes (Cl) for FmPro3 and FmPro4.

diction capability, they require extensive numerical com-
putations when dealing with the entire range of the 2D
fluorescence spectra.

Therefore, in this study the 2D fluorescence spectra
gathered during the fermentation process were analyzed
with the PCA and SOM techniques. The analysis of the
fluorescence spectra using the PCA and SOM methods
helped to describe the fermentation process rapidly and
qualitatively.

The PCA method was used to reduce the dimensional-
ity of the fluorescence spectra and to find the relationship
between the process parameters and PCs. In this work,
the total score values of PC1 and PC2 for the 4 fermenta-
tion processes were about 50~60%, so that the use of a
single score plot was insufficient to interpret the process.
The low score values of the PCs may result from the use
of 185 CWL selected based on a 20 nm scan, of which
some of the CWLs had no significant variances regarding
the fermentation time. The loading data provided us with
some information, such as how large was the variance of
each CWL, i.e. which CWLs had a substantial effect on
the description of each PC. The larger the value of a par-
ticular CWL, the larger the variance of the fluorescence
spectra, i.e. the more information that could be obtained
on this particular CWL. Therefore, if some significant
CWLs are selected among all of the CWLs of a fluores-
cence spectrum and used to analyze the spectra of a
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process, a higher percentage of the total variances can be
captured, with the result that the score plots of the PCs
will be able to interpret the fermentation process and be
used to evaluate the process instability.

The SOM made it possible to classify a large amount of
fluorescence spectra into a few useful classes. A large
amount of the spectral data collected during the fermenta-
tion could be classified into a few classes (e.g. 2, 5, or 8
classes), and some important spectral components, i.e.
CWLs, could be extracted from the whole range of spectral
data {e.g. 98 among the 493 spectral components [23]).
These spectral components could be used as the input data
sets for the analysis of the whole fluorescence spectra by
the PCA, as well as for the modeling of the fermentation
process by a supervised neural network algorithm [29]. In
the case where 98 CWLs were extracted from the SOM
algorithm and used to analyze the whole range of fluores-
cence spectra of FmPro1, PC1, and PC2 captured 80.6%
of the total variances, i.e. 16.9% more of the total vari-
ances than that obtained using a scan interval of 20 nm.

CONCLUSION

This study addressed the application of the PCA and
SOM methods to the analysis of the whole range of fluo-
rescence spectra obtained during the monitoring of fer-
mentation processes. During the fermentations of recom-
binant E. coli and S. cerevisiae, large amounts of 2D fluo-
rescence spectral data were collected, and the data were
analyzed by the PCA and SOM methods.

The score plots of the PCs were used successfully to
interpret the tendency of the fermentation processes.
Some significant combinations of excitation and emission
wavelengths could be selected from the whole fluores-
cence spectra based on the loading data. The SOM was
used to classify the entire range of fluorescence spectra
and to describe the relationships between certain parame-
ters and variables in the fermentation processes phe-
nomenologically.

The meaningful CWLs extracted from the entire range
of spectral data by the PCA and SOM methods represent
an important step forward in the modeling of biological
processes. That is, the 77 CWLs selected from the load-
ing data of the PCA or the 98 CWLs extracted by the
SOM network in this study could be utilized to model the
process by supervised neural networks or multivariate
regression methods.
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ABBREVIATIONS AND NOTATIONS

ALA 5-Aminolevulinic acid
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BMU Best matching unit

BPNN Backpropagation neural network

CWL Combinations of the excitation and
emission wavelength

DCW Dry cell weight

DO Dissolved oxygen concentration (%)

E Residual matrix

EGFP Enhanced green fluorescent protein

FmPro Fermentation process

GSH Glutathione

IPTG Isopropylthiogalactoside

LA Levulinic acid

LB Luria bertini medium

NMR Nuclear magnetic resonance

P Loading matrix

PBG Porphobilinogen

PC Principal component

PCA Principal component analysis

Q Scores matrix

PLS Partial least square regression analysis

SM Chemically defined medium

SOM Self-organizing map

X Given spectral matrix
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