생물공정 모니터링 및 모델링을 위한 2차원 형광스펙트럼의 다변량 분석

Chemometric Analysis of 2D Fluorescence Spectra for Monitoring and Modeling of Fermentation Processes

  • 강태형 (전남대학교 공과대학 산업공학과, 바이오 광기반기술개발사업단) ;
  • 손옥재 (전남대학교 공과대학 물질.생물화공과, 생물공정기술연구실, 바이오 광기반기술개발사업단) ;
  • 김춘광 (전남대학교 공과대학 물질.생물화공과, 생물공정기술연구실) ;
  • 정상욱 (전남대학교 공과대학 산업공학과, 바이오 광기반기술개발사업단) ;
  • 이종일 (전남대학교 공과대학 응용화공학부, 생물공정기술연구실, 바이오 광기반기술개발사업단)
  • Kang Tae-Hyoung (Department of Industrial Engineering, Research Center for Biophotonics, Chonnam National University) ;
  • Sohn Ok-Jae (Department of Material Chemical and Biochemical Engineering, BioProcess Technology Lab., Research Center for Biophotonics, Chonnam National University) ;
  • Kim Chun-Kwang (Department of Material Chemical and Biochemical Engineering, BioProcess Technology Lab., Chonnam National University) ;
  • Chung Sang-Wook (Department of Industrial Engineering, Research Center for Biophotonics, Chonnam National University) ;
  • Rhee Jong-Il (School of Applied Chemical Engineering, BioProcess Technology Lab., Research Center for Biophotonics, Chonnam National University)
  • 발행 : 2006.02.01

초록

본 연구에서는 2차원 형광스펙트럼의 PCA 분석을 통하여 발효 공정을 모니터링하고 PCR과 PLS과 같은 다변량 분석기법을 이용하여 공정을 모델링하였다. 재조합 대장균 E. coli 와 효모 S.cerevisiae의 발효 공정 중에 얻어진 많은 양의 2차원 형광스펙트럼 자료는 우선 PCA를 통해 축소된다. 그리고 PCA에서 주성분점수와 적재 산점도는 발효 공정의 정성적 경향을 묘사하기 위해 사용되었다. 또한, PCR과 PLS는 2차원 형광스펙트럼의 분석을 위해 사용되었으며 PLS모델이 보정과 예측 능력에서 PCR모델보다 조금 더 우수한 성능을 나타냈다. 따라서 2차원 형광스펙트럼 자료를 이용하여 생물공정을 모델링 하고자 할 때는 PCR 방법보다는 PLS 방법을 사용하는 것이 유리할 것이다.

2D spectrofluorometer produces many spectral data during fermentation processes. The fluorescence spectra are analyzed using chemometric methods such as principal component analysis (PCA), principal component regression (PCR) and partial least square regression (PLS). Analysis of the spectral data by PCA results in scores and loadings that are visualized in score-loading plots and used to monitor a few fermentation processes by S. cerevisae and recombinant E. coli. Two chemometric models were established to analyze the correlation between fluorescence spectra and process variables using PCR and PLS, and PLS was found to show slightly better calibration and prediction performance than PCR.

키워드

참고문헌

  1. Langergraber G., Fleischmann N., and F. Hofstaedter (2003), A multivariate calibration procedure for UV/VIS spectrometric quantification of organic matter and nitrate in wastewater, Water Sci. Tech. 47(2), 63-71
  2. Givens D. I. and E. R. Deaville (1999), The current and future role of near infrared reflectance spectroscopy in animal nutrition, J. Agr. Res. 50(7), 1131-1145 https://doi.org/10.1071/AR98014
  3. Vaidyanathan, S., S. White, L. Harvey, and B. McNeil (2003), Influence of morphology on the near-infrared spectra of mycelial biomass and its implications in bioprocess monitoring, Biotech. Bioeng. 82(6), 715-724 https://doi.org/10.1002/bit.10621
  4. Climander, C. and C. F. Mandenius (2002), Online monitoring of a bioprocess based on a multi-analyzer system and multivariate statistical process modeling, J. Chem. Tech. Biotech. 77, 1157-1168 https://doi.org/10.1002/jctb.691
  5. Tartakovsky, B., M. Scheintuch, J. M. Hilmer, and T. Scheper (1996), Application of scanning fluorometery for monitoring of a fermentation process, Biotech. Progr. 12, 126-131 https://doi.org/10.1021/bp950045h
  6. Mukherjee, J., C. Lindermann, and T. Scheper (1999), Fluorescence monitoring during cultivation of Enterobacter aerogenes at different oxygen levels, Appl. Microbiol. Biotech. 52, 489-494 https://doi.org/10.1007/s002530051550
  7. Marose, S., C. Lindemann, and T. Scheper (1998), Two-dimensional fluorescence spectroscopy: A new tool for on-line bioprocess monitoring, Biotech. Prog. 14, 63-74 https://doi.org/10.1021/bp970124o
  8. Wolf, G., J. S. Almeida, C. Pinheiro, V. Correia, C. Rodrigues, MAM. Reis, and J. G. Crespo (2001), Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes, Biotech. Bioeng. 72, 297-306 https://doi.org/10.1002/1097-0290(20010205)72:3<297::AID-BIT6>3.0.CO;2-B
  9. Boehl, D., D. Solle, B. Hitzmann, and T. Scheper (2003), Chemometric modeling with two-dimensional fluorescence data for Claviceps purpurea bioprocess characterization, J. Biotech. 105, 179-188 https://doi.org/10.1016/S0168-1656(03)00189-5
  10. Basheer, I. A. and M. Hajmeer (2000), Artificial neural networks: fundamentals, computing, design, and application, J. Microbiol. Meth. 43, 3-31 https://doi.org/10.1016/S0167-7012(00)00201-3
  11. Bhat, N. V. and T. J. (1992), Determining model structure for neural network stripping, Compo Chem. Eng. 16, 271-281
  12. Bo, R. (2003), Multivariate calibration. What is in chemometrics for the analytical chemist? Anal. Chim. Acta. 500, 185-194 https://doi.org/10.1016/S0003-2670(03)00681-0
  13. Geladi P., B. Sthson, J. Nystrom, T. Lillhinga, T. Lestander, and J. Burger (2004), Chemometrics in Spectroscopy, Spectrochim. Acta. Part B 59, 1347-1357
  14. Jolliffe, I. T. (1986), Principal component analysis, New York, Springer
  15. Dufour, E. and A. Riaublanc (1997), Potentiality of spectroscopic methods for the characterization of dairy products I Front-face fluorescence study of raw, heated and homogenized milks, Le Lait 77(6), 657-670 https://doi.org/10.1051/lait:1997647
  16. Guimet, F., J. Ferre, R. Bogue, and F. X. Rius (2004), Application of unfold principal component analysis and parallel factor analysis to the extrapolatory analysis of olive oils by means of excitation-emission matrix fluorescence spectroscopy, Anal. Chim. Acta. 515. 75-85 https://doi.org/10.1016/j.aca.2004.01.008
  17. Tartakovsky, B., L. A. Lishman, and R. L. Legge (1996), Application of multi-wavelength fluorometry for monitoring wastewater treatment process dynamics, Water Res. 30, 2941-2948 https://doi.org/10.1016/S0043-1354(96)00196-0
  18. Karim. M. N., D. Hodge, and L. Simon (2003), Data-based modeling and analysis of bioprocesses: some real experiences, Biotech. Prog. 19, 1591-1605 https://doi.org/10.1021/bp015514w
  19. Cooper, J. B. (1999), Chemometric analysis of Raman spectroscopic data for process control applications, Chemomet Intell. Lab. Sys. 46, 231-247 https://doi.org/10.1016/S0169-7439(98)00174-9
  20. Otsuka, M. (2004), Comapartive particle size determination of phenacetin bulk powder by using Kubelka-Munk theory and principal component regression analyis based on near-infrared spectroscopy, Powder Tech. 141, 244-250 https://doi.org/10.1016/j.powtec.2004.01.025
  21. Skibsted, E., C. Lindemann, C. Roca, and L. Olsson (2001), On-line bioprocess monitoring with a multi-wavelength fluorescence sensor using multivariate calibration, J. Biotech. 88, 47-57 https://doi.org/10.1016/S0168-1656(01)00257-7
  22. Haack, M. B., A. Eliasson, and L. Olsson (2004), On-line cell mass monitoring of Saccharomyces cerevisiaecultivations by multi-wavelength fluorescence, J. Biotech. 114, 199-208 https://doi.org/10.1016/j.jbiotec.2004.05.009
  23. Wentzell, P. D. and L. V. Montoto (2003), Comparison of principal components regression and partial least squares regression through generic simulations of complex mixturtes, Chem. Intell. Lab. Sys. 65, 257-279 https://doi.org/10.1016/S0169-7439(02)00138-7
  24. Rhee, J. I., Lee K.-I., Kim C.-K., Yim Y.-S., Chung S-W., Wei, J., and K.-H. Bellgardt (2005), Classification of two-dimensional fluorescence spectra using self-organizing maps, Biochem. Eng. J. 22, 135-144 https://doi.org/10.1016/j.bej.2004.09.008
  25. Chung, S. Y, Seo K. H., and Rhee J. I. (2005), Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinant E. coli, Proc. Biochem. 40. 385-394
  26. Shimizu, H., K. Araki, S. Shioya, and K. I. Suga (1991), Optimal production of glutathione by controlling the specific growth rate of yeast in fed-batch culture, Biotech. Bioeng. 38, 196-205 https://doi.org/10.1002/bit.260380212
  27. Tietze, F. (1969), Enzymic method for quantitative determination of nanogram amount of total and oxidized glutathione, Anal. Biochem. 27, 502-522 https://doi.org/10.1016/0003-2697(69)90064-5
  28. Teshima, N., H. Katsumate, M. Kurihara, T. Sakai, and T. Kawashima (1999), Flow-injection determination of copper(II) based on its catalysis on the redox reaction of cysteine with iron(III) in the presence of 1,10-phenanthroline, Talanta 50, 41-47 https://doi.org/10.1016/S0039-9140(99)00108-3
  29. Liu, R. X., J. Kuang, Q. Gong, and X. L. Hou (2003), Principal component regression analysis with SPSS, Comp. Meth. Prog. Biomed. 71, 141-147 https://doi.org/10.1016/S0169-2607(02)00058-5
  30. Geladi, P. and B. R. Kowalski (1986), Partial least-squares regression: tutorial, Anal. Chim. Acta. 185, 1-17 https://doi.org/10.1016/0003-2670(86)80028-9
  31. Maltlab manual, vers. 6.1, The Mathworks, Inc., USA, 2002
  32. Lee, K. I., Yim Y. S., Chung S. W., Wei J., and Rhee J. I. (2006), Application of artificial neural networks to the analysis of 2D fluorescence spectra in recombinant E.coli fermentation processes, J. Chem. Tech. Biotech. in print
  33. Lindemann, C., S. Marose, H. O. Nielson, and T. Scheper (1998), 2-Dimensional fluorescence spectroscopy for on-line bioprocess monitoring, Sens. Actuat. B 51, 271-277
  34. Morel, M., K. Santamaria, M. Perrier, S. R. Guiot, and B. Tartakovsky (2004), Application of multi-wavelength fluorometery for on-line monitoring of an anerobic digestion process, Water Res. 38, 3287-3296 https://doi.org/10.1016/j.watres.2004.05.003
  35. Hegedorn, A., R. L. Legge, and H. Budman (2003), Evaluation of spectrofluorometry as a tool for estimation in fed-batch fermentations, Biotech. Bioeng. 83(1), 104-111 https://doi.org/10.1002/bit.10649