• Title/Summary/Keyword: 2D drawings generating

Search Result 11, Processing Time 0.025 seconds

Development of an Application to Generate 2D Drawings in Automation using Open BIM Technologies (개방형BIM기반 2D도면 자동 생성 프로그램 개발에 관한 연구)

  • Kim, Inhan;Lee, Minjae;Choi, Jungsik;Kim, Gutaek
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.417-425
    • /
    • 2016
  • Especially for resolving BIM data compatibility issue, as one of recently raised BIM technology issues, has also been improved by using open BIM, representatively using IFC (Industry Foundation Classes) format. As shown in many case studies, usefulness of BIM technology is increasing day by day, and the IFC-based open BIM technology is essential in recent AEC projects where the productive collaboration is of importance. One of current problems in actual projects is that there is a conflict between conventional ways and newly developed BIM ways. Using both conventional and new technologies leads construction workers to having more work loads, consequently the efficiency and productivity of on-site workers have been decreased. Thus, it is strongly necessary to facilitate 3D BIM models to extract and generate 2D precision drawings in automation, especially using open BIM technologies. Some native BIM authoring tools have limitations in there automatic generation of 2D drawings, and there is no standardized mechanism to generate 2D drawings from heterogeneous applications. For this reason, this paper aims to develop an automated stand-alone program to generate 2D drawings in automation using IFC file, totally independent from various BIM authoring tools. By using the application described in this paper, any type of general drawings such as plan, section and elevation can be extracted without additional efforts. The development approach described in this paper, based on the open BIM technologies, has a strong impact to the current process especially in the perspective of enhancing productivity when we need to find out a trade-off in-between conventional and new approaches.

Generation of 3D Model and Drawing of Rotor Using 2D Entity Groups with Attributes (속성이 부여된 2차원 엔터티 그룹을 이용한 로터의 3차원 모델 및 도면 생성)

  • Kim, Yeoung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.91-97
    • /
    • 2019
  • A method for generating 3D solid models and drawings for a rotor in the steam turbine is proposed. One of the most important design steps is generating the drawing for manufacturing it. This step is a very routine and time-consuming job because each drawing is composed of several kinds of views and many dimensions. To achieve automation for this activity, rotor profiles are composed of 2D entity groups with attributes. Based on this, the improved design process is developed as follows. First, the rotor profiles can be selected by searching for 2D entity groups using the related attributes. Second, the profiles are connected sequentially so that an entire rotor profile is determined. The completed profile is used to generate 2D drawings automatically, especially views, dimensions, and 3D models. The proposed method is implemented using a commercial CAD/CAM system, Unigraphics, and API functions written in C-language and applied to the rotor of steam turbines. Some illustrative examples are provided to show the effectiveness of the proposed method.

Development of an Hull Structural CAD System based on the Data Structure and Modeling Function for the Initial Design Stage (초기 설계를 위한 자료 구조 및 모델링 함수 기반의 선체 구조 CAD 시스템 개발)

  • Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.362-374
    • /
    • 2006
  • Currently, all design information of a hull structure is being first defined on 2D drawings not 3D CAD model at the initial ship design stage and then transferred to following design stages through the 2D drawings. This is caused by the past design practice, limitation on time, and lack of hull structural CAD systems supporting the initial design stage. As a result, the following design tasks such as the process planning and scheduling are being manually performed using the 2D drawings. For solving this problem, a data structure supporting the initial design stage is proposed and a prototype system is developed based on the data structure. The applicability of the system is demonstrated by applying it to various examples. The results show that the system can be effectively used for generating the 3D CAD model of the hull structure at the initial design stage.

Line Drawings from 2D Images (이차원 영상의 라인 드로잉)

  • Son, Min-Jung;Lee, Seung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.12
    • /
    • pp.665-682
    • /
    • 2007
  • Line drawing is a widely used style in non-photorealistic rendering because it generates expressive descriptions of object shapes with a set of strokes. Although various techniques for line drawing of 3D objects have been developed, line drawing of 2D images has attracted little attention despite interesting applications, such as image stylization. This paper presents a robust and effective technique for generating line drawings from 2D images. The algorithm consists of three parts; filtering, linking, and stylization. In the filtering process, it constructs a likelihood function that estimates possible positions of lines in an image. In the linking process, line strokes are extracted from the likelihood function using clustering and graph search algorithms. In the stylization process, it generates various kinds of line drawings by applying curve fitting and texture mapping to the extracted line strokes. Experimental results demonstrate that the proposed technique can be applied to the various kinds of line drawings from 2D images with detail control.

Symbol recognition using vectorial signature matching for building mechanical drawings

  • Cho, Chi Yon;Liu, Xuesong;Akinci, Burcu
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.155-177
    • /
    • 2019
  • Operation and Maintenance (O&M) phase is the main contributor to the total lifecycle cost of a building. Previous studies have described that Building Information Models (BIM), if available with detailed asset information and their properties, can enable rapid troubleshooting and execution of O&M tasks by providing the required information of the facility. Despite the potential benefits, there is still rarely BIM with Mechanical, Electrical and Plumbing (MEP) assets and properties that are available for O&M. BIM is usually not in possession for existing buildings and generating BIM manually is a time-consuming process. Hence, there is a need for an automated approach that can reconstruct the MEP systems in BIM. Previous studies investigated automatic reconstruction of BIM using architectural drawings, structural drawings, or the combination with photos. But most of the previous studies are limited to reconstruct the architectural and structural components. Note that mechanical components in the building typically require more frequent maintenance than architectural or structural components. However, the building mechanical drawings are relatively more complex due to various type of symbols that are used to represent the mechanical systems. In order to address this challenge, this paper proposed a symbol recognition framework that can automatically recognize the different type of symbols in the building mechanical drawings. This study applied vector-based computer vision techniques to recognize the symbols and their properties (e.g., location, type, etc.) in two vector-based input documents: 2D drawings and the symbol description document. The framework not only enables recognizing and locating the mechanical component of interest for BIM reconstruction purpose but opens the possibility of merging the updated information into the current BIM in the future reducing the time of repeated manual creation of BIM after every renovation project.

Automated Bar Placing Model Generation for Augmented Reality Using Recognition of Reinforced Concrete Details (부재 일람표 도면 인식을 활용한 증강현실 배근모델 자동 생성)

  • Park, U-Yeol;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.289-296
    • /
    • 2020
  • This study suggests a methodology for automatically extracting placing information from 2D reinforced concrete details drawings and generating a 3D reinforcement placing model to develop a mobile augmented reality for bar placing work. To make it easier for users to acquire placing information, it is suggested that users takes pictures of structural drawings using a camera built into a mobile device and extract placing information using vision recognition and the OCR(Optical Character Registration) tool. In addition, an augmented reality app is implemented using the game engine to allow users to automatically generate 3D reinforcement placing model and review the 3D models by superimposing them with real images. Details are described for application to the proposed methodology using the previously developed programming tools, and the results of implementing reinforcement augmented reality models for typical members at construction sites are reviewed. It is expected that the methodology presented as a result of application can be used for learning bar placing work or construction review.

Development of an Object-Oriented Initial Hull Structural Design System (객체 지향 초기 선체 구조 설계 시스템 개발)

  • Roh M.-I.;Lee K.-Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.4
    • /
    • pp.244-253
    • /
    • 2005
  • In the initial ship design stage of shipyards, the hull form design, the basic design (compartment modeling and ship calculation), and the hull structural design are being performed by different systems. Thus, the problem on interfaces between these systems occurs. To solve this, we developed the hull form design system 'EzHULL' and the compartment modeling and ship calculation system 'EzCOM-PART' for developing finally an integrated ship design system. And, in this study, we present an object-oriented hull structural design .system 'EzSTRUCT', which is developed recently. A structural design in an initial design stage can be frequently changed, because the design is not firmly determined yet. Therefore, designers perform the simplified structural modeling with bigger structural parts (or objects) such as deck, longitudinal bulkhead, etc. in the initial design stage, and the detailed structural modeling with smaller structural parts such as plate, seam, slot, etc. in the detailed design stage. However, the existing hull structural CAD system used in a shipyard is not efficient in generating a 3D CAD model in the initial design stage, because it has difficulty in handling frequent changes in design. Therefore, designers initially draw 2D drawings in the initial design stage, and generate the 3D CAD model from these 2D drawings in the detailed design and production design stages. In this study, the hull structural design system, which can efficiently generate a 3D CAD model through rapid modeling at an initial design stage, was developed in this study To evaluate the applicability of the developed system, we applied it to hull structural modeling of various ships such as a VLCC, a bulk carrier, etc. As a result, it could efficiently generate a 3D CAD model of a hull structure.

User-Guidable Abstract Line Drawing of 2D Images (사용자 제어가 용이한 이차원 영상의 추상화된 라인 드로잉 생성)

  • Son, Min-Jung;Lee, Yun-Jin;Kang, Hen-Ry;Lee, Seung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.2
    • /
    • pp.110-125
    • /
    • 2010
  • We present a novel scheme for generating line drawings from 2D images, aiming to facilitate effective visual communication. In contrast to conventional edge detectors, our technique imitates the human line drawing process to generate lines effectively and intuitively. Our technique consists of three parts: line extraction, line rendering, and user guidance. In line extraction, we extract lines by estimating a likelihood function to effectively find the genuine shape boundaries. In line rendering, we consider the feature scale and the blurriness of lines with which the detail and the focus-level of lines are controlled. We also employ stroke textures to provide a variety of illustration styles. User guidance is allowed to modify the shapes and positions of lines interactively, where immediate response is provided by GPU implementation of most line extraction operations. Experimental results demonstrate that our technique generates various kinds of line drawings from 2D images enabled by the control over detail, focus, and style.

How to automatically extract 2D deliverables from BIM?

  • Kim, Yije;Chin, Sangyoon
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1253-1253
    • /
    • 2022
  • Although the construction industry is changing from a 2D-based to a 3D BIM-based management process, 2D drawings are still used as standards for permits and construction. For this reason, 2D deliverables extracted from 3D BIM are one of the essential achievements of BIM projects. However, due to technical and institutional problems that exist in practice, the process of extracting 2D deliverables from BIM requires additional work beyond generating 3D BIM models. In addition, the consistency of data between 3D BIM models and 2D deliverables is low, which is a major factor hindering work productivity in practice. To solve this problem, it is necessary to build BIM data that meets information requirements (IRs) for extracting 2D deliverables to minimize the amount of work of users and maximize the utilization of BIM data. However, despite this, the additional work that occurs in the BIM process for drawing creation is still a burden on BIM users. To solve this problem, the purpose of this study is to increase the productivity of the BIM process by automating the process of extracting 2D deliverables from BIM and securing data consistency between the BIM model and 2D deliverables. For this, an expert interview was conducted, and the requirements for automation of the process of extracting 2D deliverables from BIM were analyzed. Based on the requirements, the types of drawings and drawing expression elements that require automation of drawing generation in the design development stage were derived. Finally, the method for developing automation technology targeting elements that require automation was classified and analyzed, and the process for automatically extracting BIM-based 2D deliverables through templates and rule-based automation modules were derived. At this time, the automation module was developed as an add-on to Revit software, a representative BIM authoring tool, and 120 rule-based automation rulesets, and the combinations of these rulesets were used to automatically generate 2D deliverables from BIM. Through this, it was possible to automatically create about 80% of drawing expression elements, and it was possible to simplify the user's work process compared to the existing work. Through the automation process proposed in this study, it is expected that the productivity of extracting 2D deliverables from BIM will increase, thereby increasing the practical value of BIM utilization.

  • PDF

A Development of 3D Computer-Aided Design(CAD) Add-on Program for a Quantity Take-off through the User Needs Analysis (사용자 요구 사항 분석에 따른 물량산출 연동 프로그램 개발)

  • Kim, Seong-Ah;Lee, Jea-Jun;Shin, Tea-Hong;Chin, Sang-Yoon;Kim, Yea-Sang;Choi, Cheol-Ho
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.297-300
    • /
    • 2008
  • Since the Three Dimensional Computer Aided Design(3D CAD) appeared in 1990s, Building Information Modeling(BIM) has got the great issue in the construction project nowadays. BIM is the process of managing and generating building information during life cycle of a construction project. And information can be moved to 3D modeling flexibly in BIM. As a result, a field of estimating has also been doing researches in the calculation of the amount of building materials from 3D modeling. And the Construction Cost Estimating Software which is generally used over the world has been trying to be applied to the Construction project in Korea. But, when we consider the productivity, it is less efficient than the existing way in Korea which use the 2D Drawings when they take off the Quantity. Also, there are lots of difference how to estimate the construction cost. between Korea and the others. Because it is a bit hard to apply the software used in the other countries to the construction project in Korea, people couldn't use it well in the construction project actually. In this study, for developing the appropriate construction cost estimating software rooted in 3D in Korea, we suggest 3D CAD Add-on Program for a Quantity Take-off which can move quantitative information to 3D CAD.

  • PDF