110

AR AT =F A AL D o] A 37 A 2 3(20104)

Ag7 A7t Lol ol AL el
FA3E 29 =29 AA
(User—Guidable Abstract Line Drawing of 2D Images)

=y’ ogd”™ zye™ ofs 8™
(Minjung Son) (Yunjin Lee) (Henry Kang) (Seungyong Lee)

R 9 B =3e olid ggoztH AZHem avA PRs ATY 4 dE P =29 9
Ao AASE WHE ANBT B P 71T Bed X 23 Pud 299 A B9 =29 3
AE Agstel HBAoMN AN FAE AR, DA A £, A9 A, AgA A4 4

9AZ FAET 7Y FF @AdME $5 $5E ol8std 49 TaF A BESE EAFFH2E 4
2oz #ls 23 F2E FAS 44 dnFste A AP AN, T2 R A
FoEle] 72 9 239 AE=E B HAete] 2l 54 274 Ad F=E zyetm, ol o
F gtz @] S DA Yo 3 A4S H 88 mAYes AR A4 dACME
Aoz Y BA9 EFold AAE AHEA dEAEeE £3E 5 %k o W AR 4 o
T 24 A WS 93 B 329 dFES HAol GPU AelA T AAE HEe] dz A
£ olxd dAoRREH Fo3 FEIN Yo 2 FEY 2d 3 LeEdS Yte U= =YY &
A E2YS B& F AR, EBY ol& AFEA £49T £ Ak

1=« ulabdE Aoy, 2etds), 2l =229, AHA A, adgasiEde, $=84, £ 27),

WY A=

Abstract We present a novel scheme for generating line drawings from 2D images, aiming to
facilitate effective visual communication. In contrast to conventional edge detectors, our technique
imitates the human line drawing process to generate lines effectively and intuitively. Our technique
consists of three parts: line extraction, line rendering, and user guidance. In line extraction, we extract
lines by estimating a likelihood function to effectively find the genuine shape boundaries. In line
rendering, we consider the feature scale and the blurriness of lines with which the detail and the
focus-level of lines are controlled. We also employ stroke textures to provide a variety of illustration
styles. User guidance is allowed to modify the shapes and positions of lines interactively, where
immediate response is provided by GPU implementation of most line extraction operations. Experi-
mental results demonstrate that our technique generates various kinds of line drawings from 2D
images enabled by the control over detail, focus, and style.

Key words : non-photorealistic rendering, stylization, line drawing, user-guidance, GPU, likelihood

function, feature scale, blurriness

- This work was supported by the IT R&D program of MKE/MCST/KEIT it A8 0 POty AFE T 2

(K1001820, Development of Computational Photography Technologies for leesy @postech.ac.kr
Image and Video Contents). This work was also supported by the =EH4 0 20008 9¥ 17Y
Engineering Research Center of Excellence Program of Korea Ministry AAgER 0 2009 129 18Y

of Education. Science and Technology(MEST)/National Research
Foundation of Korea(NRF) (Grant 2010-0001721).

t g - xREaign Afe T o] uff, ALE-2 4A Yo AL8E 4 glom A HojAd & _,_:[194. %ﬂ
sionson@postech.ac.kr & ¥IEA] Ao Yt o] flo] BHoR A ¥, 2%, 3
t+ @9 olFuEm vlYoEy ug o) A2 B E ste A9l dslede Al 3718 da “1%— Zl Baljof
yunjin@ajou.ac.kr s},
+t A 8 9 : University of Missouri - St. Louis Dept. of BRI} =EA: Alx"E P o] & A7 A2E(2010.4)

Mathematics and Computer Science @<
kang@cs.umsl.edu

Copyright©2010 =% B33 : /i) E8 ol 28 53¢ %, o] A%
Bo) A e d¥o] ot AR 2 gAY AR AzE 7k

A A7 Sol@ olAY Jgol F45E B =2 44 111

1.ME

Line drawing is a simple yet effective means of
visual communication. A good piece of line art,
sketch, or technical illustration typically consists of
a small number of lines, describing the identifying
characteristics of objects, that is, shapes. This en-
ables quick recognition and appreciation of the
subject with little distraction from relatively unim-
portant content. Also, line-based object represen-
tation can provide significant gain, both in terms of
time and storage space, in subsequent processing of
the data.

As an effective tool for abstract shape visuali-
zation, line drawing falls squarely within the scope
of non-photorealistic rendering (NPR). In recent
years, 3D line drawing, that is, line drawing of 3D
objects, has been a central issue of NPR [1-8], and
has proven to outperform conventional photorealistic
rendering in terms of quick and accurate commu-
nication of shapes. Shape of a 3D object is in
general explicitly represented by low-level geometric
elements (such as points or vertices on the surface)
whose coordinates are known a priori, and hence
the problem of 3D line drawing is reduced to iden-
tification of important contours (such as creases or
silhouettes) formed by these elements. In 2D line
drawing, however, the target shape to convey is
implicitly embedded in a 2D lattice (image) and
often corrupted by noise, making the task of con-
tour identification a less obvious-in fact extremely
difficult-one.

Traditionally, various problems in 2D line extr-
action have been addressed by a low-level image
analysis technique called edge detection. From the
perspective of visual communication, however, edge
detectors typically have limitations in the following
respects. First, the resulting edge map often includes
lines that may be accurate but less meaningful (or
even distracting) to the viewer. Second, the ‘impor-
tance’ of a line typically depends on the image
gradient only, hindering the possibility of a more
Third, they have no
interest in the ‘style’ of lines and thus do not

sophisticated detail control.

provide any mechanism for style control.
In this paper, we present a user-guidable 2D

line-drawing framework that addresses these limi-
tations and problems in 2D line drawing. The main
idea is to extract lines that locally have the biggest
‘likelihood’ of being genuine lines that will be of
interest to the viewer. While extracting lines, we
also compute additional line properties, such as
feature scale and blurriness. The rendering module
then performs line drawing by mapping on the
extracted lines stroke textures with a variety of
styles. For the versatility of line drawing, the
attributes of the lines are automatically adjusted
according to the line properties delivered from the
line extraction module. In addition to automatic
generation of line drawings, we provide a simple
user interface which enables a user to easily modify
lines while the features of the input image are also
preserved.

Our technique resembles the human line drawing
process. The likelihood function wused for line
extraction is constructed by merging small line
segments fitted for the neighborhoods of points of
the image (see Fig. 2(c)). This is similar to the
sketching process of artists where they typically
apply many small strokes over the shape contours.
User guidance can also be regarded as the process
which adds new small line segments. In rendering
extracted lines, the thicknesses and opacities of
lines are controlled by their feature scales and
blurriness. This imitates a typical artistic drawing
where important shape features are drawn promi-
nently with strong colors while background is
depicted with soft tones and colors.

The basic idea of the line drawing method based
on likelihood function estimation was presented in
our previous work [9,10]. In this paper, we made the
following three improvements induced by computing
likelihood functions on a GPU. First, the method
runs much faster. With the previous method, line
drawing took about 7 to 30 seconds, depending on
the image size. Without user intervention, our new
method can generate a line drawing in less than a
second. Second, we take all pixels into account in
the line drawing process. In the previous work, line
drawing results vary with feature point sampling,
where only feature points having large gradient

magnitudes are used in order to accelerate the

112 AR AR =ER]: Aj2E] D o]E A 37 E A 2 Z(N104)

computation. Third, we can provide effective user

guidance to control the extracted lines. With fast

computation on a GPU, the response for a user
guidance can be provided immediately.

In summary, our line drawing technique provides
the following merits;

« Effective shape extraction and depiction: Due to
the resemblance to the human line drawing pro-
cess, ‘perceptually meaningful’ lines can be captured
and then rendered in ‘recognition efficient’ styles.

o Effective style control: Level of detail, level of
focus, and the style of the illustration can be con-
trolled in a way that is impossible using conven-
tional edge detection techniques. For example, we
can remove a set of strong but unimportant
edges, or switch line styles for different moods of

the illustration.

Effective user guidance: A user can easily modify
a line drawing with a simple user interaction. By
implementing our method using GPU, changes
generated by a user can be reflected in the line

drawing at interactive frame rates.

Effective visual communication: Given the above
properties, our technique results in fast and accu-
rate visual communication in terms of conveying

shapes and also identifying subjects.

2. Related Work

2.1 Stroke-based rendering

Most of the existing image-guided NPR techni-
ques aim at creating styles that are somewhat dis-
tant from ‘pure’ line drawing. These styles include
painting [11-17], pen-and-ink illustration [18-20],
pencil drawing [21,22], and engraving [23,22], where
clean, accurate depiction of outlines is either unne-
cessary or relatively unimportant. Instead, they focus
on filling the interior regions with certain types of
‘strokes’ (thus the term of stroke-based rendering),
such as lines, rectangles, or polygons, to stylis-
tically describe the tonal variation across the surface.
Some of these techniques use textured polygons as
strokes to widen the possible rendering styles.
While we also use textured strokes for the line
rendering, the strokes in our case are placed along
the detected shape boundaries to convey the shapes,

not the interior tonal information.

2.2 Image abstraction

In image abstraction (also called image tooning),
the interior regions are abstracted by color smoo-
thing and pixel clustering. To clearly distinguish
the clustered regions and reveal the shape
boundaries, line drawing is often used as part of
the rendering process. DeCarlo and Santella [24]
presented an image abstraction system based on
Canny edge detector [25] and mean-shift image
segmentation [26]. Wang et al. [27] and Collomosse
et al, [28] both applied the mean-shift segmentation
to classify regions in videos. Wen et al. [29] also
used mean-shift segmentation to produce a rough
sketch of a scene. Fischer et al. [30] and Kang et
al. [17] both employed Canny edge detector to
obtain stylized augmented reality and line-based
illustrations, respectively. In general edge detector
is suitable for extracting lines while image segmen-—
tation is effective in pixel clustering.

Gooch et al. [31] presented a facial illustration
system based on difference-of-Gaussians (DoG)
filter, similar to Marr-Hildreth edge detector [32].
Winnemoller et al. [33] recently extended this tech-
nique to general color images and video. Unlike
Canny’s method, their DoG edge detector produces
a group of edge pixels along the boundaries in

non-uniform thickness, creating an impressive look

_reminiscent of pen-and-ink line drawings done by

real artists. On the other hand, it also makes it
difficult to extract the accurate shape and direction
of each contour, which may hinder the flexible
control of line styles.

2.3 Edge detection

In addition to the standard edge detectors men-
tioned above, there are a variety of edge detectors
that are useful in many image processing applica—
tions [34-38]. In fact, the literature on edge detec—
tion is vast, and we make no attempt to provide a
comprehensive survey. The limitations of edge
detectors in general have been discussed in Sec. 1.

Our line extraction algorithm (which will be
described in Sec. 4) can also be regarded as a
novel edge detector. The main difference is that
our approach is based on local line fitting, mimi-
cking the human line drawing process. We show

that this approach is effective in terms of capturing

AL A7t gl oY Jarel #4348 P =29 44

genuine lines and also preserving line connectivity.
More importantly, our line extraction process is
specifically designed to enable control over various
illustration, such as line details,
which

drawing application but not supported in typical

aspects of an

focus, and styles, is essential in a line

edge detection algorithms.

3. Overall Process

Qur overall framework consists of three modules:
line extraction, line rendering, and user guidance
(see Fig. 1). Each module is again decomposed into
multiple steps which we briefly describe here.

Likelihood function computation’ For each pixel,
we compute its likelihood of being part of a
genuine line by performing least-square line fitting
in the neighborhood. The local likelihood functions
this
construct a global likelihood function over the entire

obtained in way are then combined to
image, from which we extract lines.
Feature scale and blurriness computation: In

general, the size of the neighborhood (kernel)
strongly affects the resulting likelihood function. We
compute the likelihood functions in two levels (with
small and large kernel sizes), to extract additional
information including feature scale and blurriness,
based on the line fitting errors. Feature scale of a
pixel refers to the size of the feature that the pixel
belongs to, and it is useful for separating large
dominant features from unimportant details. Blurri-
ness measures how blurry its neighborhood is, and
is used to control the level of focus in the illu-
stration between foreground objects and the back-

ground. In addition, the two likelihood functions are

Likelihood function \
computation Linking

113

combined using the blurriness so that the resulting
likelihood function enables us to extract lines from
blurry regions in a more robust way.

Linking: We connect the ridge points on the
global likelihood function to create individual line
strokes. We first create a set of connected com-
ponents by naively connecting the adjacent ridge
points (which we call clustering). We then extract
an ideal (minimum-cost) line stroke from each cluster.

Curve fitting: Each line stroke is further smoo-
thed by curve fitting. In particular, we adjust the
number of points along the curve based on the
local normal derivatives, to reduce the number of
points while preserving the shape.

Texture mapping: The final illustration is created
by visualizing the lines as textured strokes. Type
of stroke texture affects the overall style or mood
of the illustration. Line attributes such as thickness
and opacity are controlled by the feature scale and
the blurriness to emphasize dominant and fore-
ground objects while deemphasizing detailed and
background parts. Since a line with zero thickness
or zero opacity is invisible, the line attributes can
also be used to change the amount of lines in a
drawing for level-of-detail (LOD) control.

User Guidance:
modification of lines, such as connecting the ends

Qur system allows for local

of two disconnected adjacent lines, adjusting the
direction of a line, and changing the connection of
lines. We can achieve these by adding user inputs
in the form of line segments and changing the
gradients around the region where the segments
are added. We can give user guidance at any time
during the line drawing process.

Texture mappib

Inputimage (Curvefitting = - ; / \
s S el e
et C = - —. 7
.")\3?3\ ~ f\@/\/ N /I\ N L
i T ¥ S |l|| em——
e R e e L B == B> compy | e v
- " P '/"'?’
Feature scale/Blurriness st =g
| computation [~
; e
Line extraction j \ Line rendering / QJSGT guidance /

Figure 1 Overall process

114 HEAEI=FR]: A28 2 o]& A 37 B A 2 5(N1049

Details of these three modules (line extraction,
line rendering, and user guidance) will be presented
in Secs. 4, 5, and 6, respectively.

4. Line Extraction

4.1 Likelihood function computation

We define a2 2D point set P={pj,...,pny} which
contains the positions of all pixels on an input
image [I(x,y). Given a 2D point set P, we wish to
likelihood function L(x),
representing the probability that a point xER?

estimate an unknown
belongs to a genuine edge. To derive L(x) from P,
we accumulate the local likelihood functions L;(x)
computed at points pi in P. Each L; (x) is computed
by fitting a line to the neighborhood of p;. This
process is motivated by a robust point set filtering
in [39] and we adapt the
technique to the domain of 2D line extraction. The

technique proposed

line fitting step and the final likelihood function L(x)
are visualized in Figs. 2(c) and 2(d), respectively.

To compute a local likelihood function L;(x), we
define a circular kernel K; of radius /4 centered at
pi, and estimate the location of a representative line
e in the kernel. Let e; be represented by n,-T p+d;
=0, where n; is a unit vector orthogonal to e;. We
obtain e using the well-known total least square
method [40]. In particular, we compute ei by mini-
mizing £(p;k) under the constraint that n/n;=1,
where

E(pi,h) = 1 Yo wipy) s +di)?
P T R Y1 wi(py))

w,;(p;) is the weight for a point p; in the kernel
K, defined by

wi(p;) Ei &]

gy - e | B8
! {lgillgjl

2

g; and éi represents a gradient vector and gra-
dient magnitude which ranges from 0 to 1. Thus,
higher weights are given to points p; having
strong edge features as well as similar edge direc-
tions to P;. This is an essential criterion for im-
proving the quality of line extraction in our app-
lication. A line in an image most likely lies on or
nearby pixels with strong gradient magnitudes.
Also, by considering gradient directions in Eq. (2),
we can separate neighboring lines with different
directions.

We then define an anisotropic (elliptical) kernel
K’', for p, using the line e;. The center ¢; of
kernel K 'l- is determined by projecting onto e; the
weighted average position of points p; in K, using
the weights w(p;). The longer radius of K'; (in
the direction of €;) is fixed as A To determine the
shorter radius of XK', (in the direction of n;), we
compute the weighted average distance from e; to
the points in KA;. The shorter radius is set by
multiplying a constant y to the average distance. In

our experiments, we used y= V2.
Now we define the local likelithood function L; (x)

as inversely proportional to the distance to e;;
_ A2 —[(x - ¢;) -ny?
Li(x,h) = ¢i(x—cy) [—‘—T— ' (g

where ¢; denotes the kernel function defined by an

anisotropic, bivariate Gaussian-like function oriented

to match the shape of A”,. In our implementation,

we use a uniform cubic B-spline basis function.

L 7

(a) input image (b) gradient magnitude {c) line fitting

(&) likelihood function

(e) ridge point clustering (f) stroke extraction

Figure 2 Line extraction steps

AHEE Aoj7h Gol gt oz F

Thus ¢; peaks at ¢;, then gradually decreases as it
moves toward the ellipse boundary and stays zero
outside. :

Finally, we obtain the global likelihood function
as the accumulation of local ones in the range of 0
and 1.

SN 91— E(pi,) Li(x, k)
h‘2

L(x))

Gradient magnitude gA, is used as a weight to
reflect the edge strength. E(p;,h) is included so
that a local likelihood function with a lower line
fitting error can have more influence on the global
one. Note that the value of E(p;h) is between 0
and 1.

4.2 Linking

42.1 Ridge point clustering

In the global likelihood function L(x), the ridges
with high function values are most likely to form
the genuine edge lines. The goal of clustering is to
put all the pixels belonging to the same line into a
single cluster. We use a method similar to the
hysteresis thresholding of Canny edge detector [25].
That is, we start with ridge pixels with local maxi-
mum function values larger than T, then trace
along the ridge directions until we visit ridge pixels
with values smaller than 7).

Ridge pixels with similar directions in the vici-
nity sometimes belong to different clusters because
of noise between the pixels. This problem causes a
long edge in the input image to split into a set of
small lines. To improve ridge point clustering, we
connect ridge pixels which are not in the immediate
neighborhood but are close enocugh and have similar
directions. When we visit ridge pixels with values
smaller than 7, during the tracing of ridge pixels,
we search ridge pixels inside the kernel centered at
the last pixel p, of the tracing. For each ridge pixel
p,, we compute the cost defined by Eq. (5) which
measures how close two pixels are along a single
line stroke. Details of the cost will be presented in
the stroke extraction step. If p, has a small cost
with p;, it means that p, can belong to a line
stroke including p,. If we find a ridge pixel p, with

smaller cost than a threshold (we use the kernel

g F43td B =29 A4 115

size in our experiments), we continue to trace by
adding p, and the pixels between P, and p; to the
cluster. Fig. 2(e) shows the result of ridge point
clustering.

4.2.2 Stroke extraction

While each cluster is now a simply connected
point set, it may not be smooth enough to be directly
drawn as a line stroke or to be point-sampled for
curve fitting. To obtain a smooth line stroke from a
cluster, we first find the farthest pair of points in
the cluster and then obtain the shortest path
between them. For the path computation, the cost
for connecting two points P; and P; is defined by

cgj =1y - 85 - max (i - sy5, [y - s35),)

i - n,| . .
5 l;; is the distance between

p; and p;, and S;; is the unit direction vector from

where §; ;=1

p; to p;. Cost ¢;; becomes low when the distance is

short, when the normals are similar, or when the
path direction is orthogonal to the normals. Fig. 2(f)
shows the result of stroke extraction.

4.3 Two-level processing

In constructing the likelihood function (Sec. 4.1),
kernel size plays an important role. Use of a small
kernel is good for extracting minute details but the
resulting lines can be disconnected or jagged es-
pecially when the region is blurry (see the top left
part of Fig. 3(b)). With a bigger kemnel, it is easier
to construct long lines even in a blurred region but

small-scale details may disappear (see the hair

(a) input image
—{h=
= iieNe=

NN

(¢} large kemnel (h = T)

(d) combined likelihood function

Figure 3 Two-level processing

116 ARAIIN=FA: A= 2L o8& A 37 F A 2 Z(0104)

region in Fig. 3(c)). To have both effects, we com-
pute the likelihood functions in two levels with
different (small and large) kernel sizes, and obtain
a new likelihood function by combining them. Fig. 3(d)
shows the line strokes extracted from the combined
likelihood function. Note that in Fig. 3(d), lines are
extracted properly in both blurry regions and
detailed regions.

4.3.1 Blurriness computation

When combining the two likelihood functions, we
can determine their relative weights by computing
the blurriness of image regions. Blurriness indicates
the degree to which a region is blurred. In general,
an important region has a clearly visible structure
while an unimportant area (such as the back-
ground) is often blurry due to the photographer’s
intentional defocusing. Therefore, we may assume
that the blurriness represents how important (or
focused) a region is.

We use the line fitting errors E(p;,h) from small
and large kernels to compute the blurriness at
points P; in P. A blurry region has a large fitting
error because strong edge points may not lie
exactly on the fitted line. On the other hand, the
fitting error becomes small in a region without
blurring.

We define the blurriness b; at p; by

b = B (E(psi, ha) + wiE{pi, hs)), (6)
where h; and h, are the two different sizes (small
and large) of the kernel, respectively. w; is the
relative weight when we combine the line fitting
errors. If E(p;,h;) is small, it means the region is
hardly blurred, and we can almost neglect E(p,,h,).
On the other hand, when E(p,;,h;) is big, we need
to check again with the large kernel to determine
the amount of blurriness. In this case, the line
fitting error E(Dp;,h,) should be reflected on the
blurriness value. For simplicity, we set w; as E(p;,
h;), which worked well in our experiments. B is a
scaling factor introduced to normalize the blurriness
value in the range between 0 and 1. Since E(p;h)
is a small value, without the scaling factor B, the
blurriness would be far less than 1, which invali-
dates the likelihood function composition in Sec.

43.2. In our experiments, we use 3.5 for B, which
is determined by testing various input images and
kernel sizes. Blurriness b; is clamped to have a

value between 0 and 1.

There have been a variety of studies on mea-
suring blurriness in a 2D imagel41-43]. In many
approaches, blurred edges are represented using
Gaussian functions with a scale parameter. The
optimal parameter is selected by minimizing esti-
mation errors or finding local maxima over scale-
space derivatives. In those approaches, it usually
takes much time to select the optimal parameter
because blurred edges should be fitted for many
different scales. On the other hand, our method
computes blurriness using line estimation errors. It
is fast and simple because errors are measured at
only two scales to define blurriness. In addition, we
can obtain continuous scales of blurriness, with
which we can control the properties of lines conti-
nuously during rendering.

432 Likelihood function composition

With the blurriness b, computed for each point p;

in P, we can compose the two likelihood functions by

Lig(x) = §(1— E(pi ha))Li(x, hq),)
Lip(x) = 41— E(pi, h))Li(x, hs), (8)
N
i — 0)Ls biLip(x
L(x) PR (¢! b)Lh.g(x)-i' Lip())’ ©

After composition, L(x) has the value in the range
of 0 and 1.

4.3.3 Feature scale computation

In addition to the blurriness, we compute for each
point P, another property, called feature scale f;,
from the line fitting errors. Feature scale is usually
considered to be almost similar to blurriness because
there are few details in blurred regions [44]. How-
ever, we must differentiate feature scale from blurri-
ness because there can be many kinds of feature
scales in unblurred regions. Feature scale defines
the size of the feature in the surrounding region of
a point. If the feature scale is large, the region
belongs to a large dominant structure of the image.
Otherwise, the region corresponds to a small detail
of the image.

Around a large feature, the line fitting error

remains consistent because a line can nicely appro-

AgA A7t §olet olatel F4sl F45E Gl 22 44 117

ximate the feature regardless of the kemnel size. It
could even decrease with a larger kemel because
the fitting error is normalized by the kernel size.
Around small features, however, the line fitting
errors increase when the kernel size becomes large.
Therefore, we define the feature scale f; at p; by

— L !

where f; is arctan(£(p;,h,) - E(p;,h;)), and h, and
h; are the same as in Eq. (6). We use the arctan
function in Eq. (10) to suppress the influence of
extremely small and large values of E(p;,h,) - E{(D;,
hy). Since f; is a value between -1 and 1, we can
get the expected feature scale in the range of 0
and 1 from Eq. (10).

Note that when there is no strong feature around
p;, the line fitting errors can be consistently large
with different kemnel sizes, resulting in a large
feature scale. However, in this case, no line will be
drawn through p; in the rendering process and the
wrong feature scale has no effect on the resulting

image.

5. Line Rendering

In this section, we first describe the basic process
of line rendering, including curve fitting and texture
mapping. We then explain how to render individual
line strokes with various styles using feature scale
and blurriness.

5.1 Line rendering process

We apply curve fitting to connected stroke points
to construct smooth lines similar to human-drawn
line illustrations. We first reduce the number of
points in each line stroke by point sampling. For
effective shape preservation, we sample more points
in a segment where normals are changing abruptly.
Sampling density is controlled with the sampling
cost between two consecutive points p;, and p,,,

along a line stroke, defined by

Siitl = liit1 - 0ii41 - Oit 1 last- 1
In Eq. (11), 5,—,j=1—ln;én—jl “l;41 1s the distance
between D; and D,,; - Dp.:. iS the last point sampled

so far.

We start with sampling the first point of a line
stroke and set it as Dy, We visit the line stroke
points in sequence and sample the next point P; 4,
when the cumulative distance from Dj,, exceeds a
pre-defined threshold. After the sampling, the cumu-
lative distance is reset to zero and Py, is updated.
In our experiments, the pre-defined threshold is a
half of the logarithmic length of the line stroke.
Thus, a relatively smaller number of points are
sampled from a longer line, which makes it smoo-
ther than a shorter line. To avoid having too few
samples along a nearly straight line, we also regularly
sample points at every pre-defined number of points,
which is 10 in our experiments.

A line stroke is converted to a smooth curve by
generating a Catmull-Rom spline curve from the
sampled points. The final line drawing is obtained
by mapping a material texture along the spline
curve. Type of stroke texture determines the overall
style or mood of the resulting line drawing. To
further imitate human line drawing, we allow line
attributes (such as thickness and opacity) to be
adjusted, using the feature scale and blurriness
computed in the line extraction process. The follo~
wing sections discuss this issue.

5.2 Detail control using feature scale

Feature scale of a line can be computed by ave-
raging the feature scale values of the points belon-
ging to the line. Feature scale of a line estimates
the size of the feature that the line is describing.
Using the feature scale values, we can control the
amount of details in the line drawing by removing
lines with small feature scales. We can also adjust
the thickness of a line stroke according to its
feature scale.

To control the amount of detail and line thick-
ness, we use two thresholds f, and f, for the
feature scale. Lines whose feature scales are smaller
than f, are either omitted or drawn with the mini-
mum line width, while lines with larger feature

scales than f, are drawn with the maximum line
width. Line widths between f, and f, are obtained

by linear interpolation.
Fig. 4 shows an example of detail control with
feature scale. In Fig. 4(c), compared to Fig. 4(b),

118 HEAI = EA

Al&g] 2 ol & Al 37 B A 2 £(20104)

AU

"'u.
PN '

ML

2 7 ~s, BAE
)/\ lm /’\O,\\‘ﬁi’t

X W/ ,,«\ K’/f

(b) simple line rendering

(a) input image

{¢) feature scale control for (b) {d) blurriness contro} for (c)

Figure 4 Line attribute control with feature scale and blurriness

details have been removed while large
features are preserved.
5.3 Level-of-focus control using blurriness

Similarly to the case of feature scale, the blur-

small

riness of a line can be computed by averaging the
blurriness of points along the line. Blurriness of a
line relates to how much the region around a line
is focused or important in the image. Blurriness
can be used to adjust the opacity of a line, that is,
to control the level-of-focus, where large blurriness
means less opacity. In addition, the blurriness can
help remove an unimportant line by making its
opacity zero.

In the line rendering process, line opacity is
controlled by blurriness using two thresholds &; and
b, in a similar way to the feature scale. Fig. 4(d)
shows an example where the opacities of the lines
in Fig. 4(c) have been changed according to the

blurriness.

6. User Guidance

A user sometimes needs to partially modify line
drawings to reflect their intension or improve the
quality of the lines. In this section, we describe
how to apply user intervention to the line drawing
process.

For effective user interaction, a user interface
should be intuitive and easy to use. In our method,
a user simply draws a piecewise linear curve
around the region where he or she wants to modify
lines (Fig. 5(b),
curves, we can connect small disconnected seg-

(e), and (h)). By drawing simple

ments (Fig. 5(a)-(c)), adjust the direction of a line
(Fig. 5(d)-(f)), or change the connectivity of lines
(Fig. 5(g)-(i)). Two or more effects may be achi-
eved together by a single input curve. In Fig. 6,

e e e | S mEmS—n ———————
(a) input lines (b) user guidance (c) result
{d) input lines (e) user guidance {f) result
(g) input lines (h) user guidance (1) result

Figure 5 Various effects by user guidance. (a)—(c):
connecting small adjacent line segments,
(d)-(): adjusting the direction of a line, and
(g)-(i): changing the connectivity of lines

L] = i =
- /n ﬂ _ /n 4} o /n
b 4‘/ s~ | AP ~<| |7 ,‘/ o~
Sl o h
N A S
| 1 ——
(a) image (b) input lines (c) user guidance (d) result

Figure 6 Example of combined effects by user
guidance

we connected two silhouette lines on the right of
the cup and straightened the connected line.

Since it is difficult for an unskilled user to draw
lines precisely, input curves can be slightly dif~
ferent from what a user intends to draw. For
example, in Fig. 6(c), the curve drawn by the user
does not follow the boundary of the cup and its
bottom part does not match the existing line. To
utilize a user input as a guidance rather than a
direct control on line drawing, we adjust gradient
magnitudes and directions around the region where

the user input is added. As a user draws a new

A& A izt gol gt o]xHg

line on the image, the system automatically assigns
weights around the line using a Gaussian-like
function similar to the one used for local likelihood
computation in Sec. 4.1. Weight values decrease
gradually moving outward from the line and the
kernel size can be changed by the user. In Fig.
5(b), (e), and (h) and Fig. 6(c), yellow lines indi-
cate lines drawn by a user and cyan regions show
the regions where weights are given. Using these
weights, gradient magnitudes and directions around
user-drawn lines are modified by the following

equations.
g = normalize(g; - (1 —w;) +d; - wi), (12)
g = min(g; - (1 +wy), Gmaz)- (13)
Here, f}mar is a maximum gradient magnitude

value of the input image, w;, and d; and are the
weight and perpendicular line direction for a point
p;, respectively. d; is computed by fitting a line to
the pixels inside the kernel centered at p;,. We can
increase the probability that a genuine line follows
the user guidance by increasing gradient magni-
tudes for a point p;. Also, lines tend to be connected
following the user guided direction by adjusting the
gradient directions. Nevertheless, since we modify
gradient magnitudes and directions obtained from
the input image, we are able to preserve image
features while reflecting the user’s intention.

In general, an edge detection system has diffi-
culty finding weak-contrasted edges, even the ones
that a human visual system can perceive (as in
Fig. &(a)). Our interactive approach makes it easy
to reveal such weak (but potentially meaningful)

Qate] FasE B =29 44 119

_

{(b) input lines

(a) input mage {(c) user guidance (d) result

Figure 8 Addition of a new line guided by user input

edges as shown in Fig. 8(c), by increasing gradient
magnitudes along weak edges with user guidance.
Note that we could have directly adjusted the
global likelihood function on the target region in
order to incorporate a user-guided line modification.
However, line drawing is sensitive to the global
likelihood function, which means that an inaccurate
user curve may end up generating a new line (if
the relative influence w; is high) or that it may be
difficult to change a line with just a single user
stroke (if w; is low). In contrast, gradient magnitudes
and directions affect lines indirectly. Even when a
user draws a less-than-perfect line, it is fixed in
the process of local likelihood function computation
because we consider all gradient magnitudes and
directions inside the Kkernel centered at each pixel.
Fig. 7 shows an example of user guidance, where
several user interactions are applied. In these ex-
amples, we could make some strokes longer by
connecting small strokes such as the line around
the top of the lighthouse, and the lines drawn on
the roof of the house. Some lines have become
more apparent like the lines around the windows of
the house or have been aligned along a specific
direction like the lines on the upper part of the
lighthouse. As shown in this figure, we can im-
prove the quality of line drawings easily with

simple user guidance.

f”“D ooy

’!(r?;]bl”lh ﬁ/vp{b \3

[

7__J)C_,~___/H_J__\

(a) lighthouse

N P
s .__('][_‘H ,4.—7-}‘ f:/ ’\\"%
{b) initial result (¢) final result

Figure 7 User guidance examples

120 FEAGFH A A2F] R o8 A 37 A A 2 3(0104)

7. Implementation on GPU

From the viewpoint of implementation, the overall
process of our method can be divided into two
parts, computations on a GPU and computations on
a CPU. Most of the heavy computations are
performed on a GPU to accelerate the process. We
implemented the GPU part using shader model 3 on
OpenGL platform.

The steps before ridge point clustering are suit—
able for pixel shader implementation since the same
operations are carried out for each pixel in an input
image. We use pixel shaders to implement the
steps of likelihood function estimation and feature
scale/blurriness computation. Ridge pixel detection
is also handled using a pixel shader for finding
local maximums of the likelihood function. Input
and output of each shader are stored in a 32 bit
texture format for more precise computation. Since
the values of a likelihood function, blurriness, and
feature scale are always between 0 and 1, it is not
necessary to normalize the values explicitly before
we convert them to textures.

Ridge point clustering is implemented on a CPU
because the operations of the step are not inde—
pendently performed on pixels. Clustering starts
from ridge pixels and processes the neighborhood
of the pixels in sequence. The stroke extraction
step is also implemented on a CPU, where the
operations are performed inside clusters. The line
rendering step draws lines by applying texture
mapping to extracted strokes. These CPU parts
runs fast enough to achieve interactive frame rates
because the processing in those steps is confined to
ridge pixels and clusters, whose size is much
smaller than all the pixels in an image.

User guidance which modifies gradient magni—
tudes and directions can easily be implemented on
a GPU. We send weights generated by user inputs
(Fig. 5(b), (e), and (h) and Eq. (13)) to a pixel
shader by storing them in a 2D texture and then
the pixel shader updates the corresponding gradient
magnitudes and directions. Since our system gene—
rates a line drawing within a second, we can
immediately see the modified result from a user

guidance.

8. Experimental Results

Line drawing results in Fig. 10 are obtained from
the input images in Fig. 9. These results demon-
strate that the amount of detail and the level of
focus are effectively controlled by our technique
using the feature scale and blurriness. For Figs.
10(a), 10(b), and 10(c), a pastel texture was used.
10(d), and 10(e) were drawn with a black-ink
texture.

(d)

Figure 9 Input images

By default, the radii of the small and large
kernels, h; and h,, are 3 and 7 pixels, respectively.
We usually set the threshold 7, for selecting ridge
pixels as 0.1. Threshold 7; is set to 0 for most
cases including all the results in Fig. 10. We also
provide a threshold 7, for removing very short
lines. 7, is usually set to 12 pixels. For feature
scale control, f; is usually between 04 to 0.5, and
Sy is set to 0.7 most of the time. For control using
blurriness, b ranges between 0.1 to 0.3, and b,
between 05 to 0.7 in our experiments. Parameter
values for the results in Fig. 10 are given in the
table below. Here, for easy control of parameters,
we normalize values of likelihood function, feature
scale, and blurriness into the range of 0 and 1
using actual minimum and maximum values. Nor-
malization costs are small since it is performed
together with transferring data from textures to
local buffers.

Each result in Fig. 10 has been improved by
applying user interactions. Figs. 10(a) and (c) got

AHEAL Aoi7} go)gt o)A FAte) Fgstd B =2y 44

121

-.7_,1):_:__:’4
=/ ~gog «—’\

e

TN

) =

ra S T
R
N
2 T o SR
2 [TR]
e TSR

poi i
Yo

B

(O]

[CY)

Figure 10 Line drawing results

fig ha | hy Ty | T | fi | fo] b by,
10(a) 3 8 015 12 | 045} 07 | 03 | 07
10(b) 3 6 010 | 10 04 | 07| 03 | 06
10(c) 3 7 012 | 15 04 | 07 | 01 0.6
10(d) 4 8 012 | 12 | 045 | 07 [02 | 05
10(e) 3 7 010 | 15 05 0.7 0.3 0.7

only two or three interaction curves, while Figs.
10(b), (d), and (e) were modified by a user for
several minutes. It is easy to improve results using
our interaction method because the method is
intuitive and can be executed at interactive frame
rates.

The proposed line drawing system was imple-
mented with Visual C++, OpenGL, and GLSL on a
Windows PC. For an image with the size of 512x
512, our GPU implementation produces 7 frame per
second for the pixel level line drawing result, and
it takes less than a second to generate a final
texture mapped line drawing result on a Pentium 4
PC with an nVIDIA GeForce 83800GT graphics card.

Different stroke textures can be applied to change
the style or mood of the illustration. The attributes
of the lines can also be adjusted. Figs. 11(a) and

(b) crayon texture

Figure 11 Control with different textures

11(b) use the same input images as Figs. 10(a) and
10(b), respectively. In Fig. 11(a), we attempted to
remove small details and express a wide range of

122 ’ ARSI =EA] : A28 B o8 A 37 @ Al 2 Z(N104

darkness to imitate the oriental black ink style. Fig.
11(b) uses a crayon texture and removes small details.

Fig. 12 compares our method with Canny edge
detector [25], which is a standard edge detection
technique. Fig. 12(b) is the result of a Canny edge
detector, where the detailed edges have been
extracted. Since Canny’s method strongly depends
on the gradient magnitudes, it is often impossible to
remove a set of strong but unimportant edges
without losing other important features. See for an
example the letters on the cup in Fig. 12(a). If we
adjust the Canny’s parameters to remove them,
important features (such as the boundaries of the
face and the cup) are also removed (see Fig. 12{c)).
In contrast, our method provides feature scale to
effectively handle such a case. Fig. 12(d) shows the
ridge points extracted from the likelihood function,
and Figs. 12(e) and 12(f) are the line drawing
results with different LOD control. We can choose
to draw the letters with fine lines as in Fig. 12(e)
or remove them as in Fig. 12(f). In addition, it is
possible to emphasize the main structures by
adjusting the opacity in the background (such as
the face in Figs. 12(e) and 12(f)). For the abst-
racted result of Fig. 12(f), we set f; as 0.6 and f, as

0.7, while b, and b, are set to 0.2 and 0.8, respectively.

(e) our result I

(f) our result 11

Figure 12 Comparison with Canny edges

9. Discussion and Future work

‘We have presented a Inovel framework for image-
guided line drawing with user interaction. Inspired
by the human line drawing process, our method
extracts lines that are most likely to represent the
genuine and meaningful shape boundaries. In addi-
tion, based on the information obtained from the
line extraction process, our rendering module visua-
lizes individual lines with different thicknesses and
opacities, in order to maximize the effectiveness of
visual communication. Overall style and mood of
the illustration may also be controlled by proper
selection of stroke texture. Finally, we can easily
modify line drawings with simple user inputs.

In a separately developed line drawing scheme by
Kang et al. [45), the DoG edge detector [31,33] is
further extended to exploit the edge flow extracted
from the image, resulting in a new line construc-
tion filter called flow-based DoG (FDoG). The FDoG
filter delivers improved line-drawing performance in
terms of coherence enhancement and noise suppres-
sion. Compared to the FDoG filtering approach, our
line construction scheme involves more sophisticated
algorithms, whereas our method exclusively provides
control over feature selection, level-of-focus, and
line style, each of which could lead to more effec-
tive visual communication.

An existing image abstraction system [24] enables
interactive LOD control wusing an eye-tracking
device for better visual communication. Qur frame-
work also provides some amount of LOD control,
based on parameter adjustment with feature scale
and blurriness analysis. This requires further study
to support such functionality to a greater degree
without the use of specialized hardware.

In contrast to interactive drawing systems, such
as Windows painter program and Adobe illustrator,
our method focuses on modifying existing lines
effectively, instead of drawing lines from scratch.
By adjusting gradient magnitudes and directions
around the region to be modified, we can preserve
image features and prevent user’s unskilled lines
from directly changing a line drawing. On the other
hand, as a result, it is hard to add new lines on
the pixels having small gradients and to generate
the same line as the user’s input.

A g7 Aol Gold oY Gabel Fatsta Bl =29 44

As discussed in Section 2, image-guided line
drawing is often coupled with abstract region
coloring to obtain stylized image abstraction. Our
line drawing result may similarly benefit from
adding colors to image regions in providing more
effective visual communication.

While our line drawing framework takes into
account multiple factors, such as gradient, feature
scale, and blurriness, the image gradient still plays
an important role in determining the level of pixel
salience. As a result, it may not be easy to entirely
discard, say, some strongly textured but unimpor-
tant background. We believe it would be beneficial
to incorporate a texture analysis procedure to add-
ress this problem. We are currently exploring the
possibility of providing control over ‘stroke merging’
to further enhance the stroke connectivity and
reduce the number of strokes in the illustration.
Also, content-based style selection could be another
interesting future research topic, that is, the deve-
lopment of an automatic mechanism for selecting

stroke style based on the image content.

References

[1] L. Markosian, M. A. Kowalski, S. J. Trychin, L.
D. Bourdev, D. Goldstein, and]J. F. Hughes,
"Real-time nonphotorealistic rendering,” ACM Com-
puter Graphics (Proc. SIGGRAPH '97), pp.4l5-
420, 1997.

A. Hertzmann and D. Zorin, “Illustrating smooth
surfaces,” ACM Computer Graphics (Proc. SIG-
GRAPH 2000), pp.517-526, July 2000.

T. Isenberg, B. Freudenberg, N. Halper, S. Sch-
lechtweg, and T. Strothotte, "A developer's guide
to silhouette algorithms for polygonal models,”
IEEE Computer Graphics and Applications, vol.23,
no.4, pp.28-37, 2003.

D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and
A. Santella, "Suggestive contours for conveying
shape,” ACM Computer Graphics (Proc. SIG-
GRAPH 2003), pp.848-855, July 2003.

R. D. Kalnins, P. L. Davidson, L. Markosian, and
A. Finkelstein, “"Coherent stylized silhouettes,” ACM
Computer Graphics (Proc. SIGGRAPH 2003), pp.
856-861, July 2003.

M. Sousa and P. Prusinkiewicz,

[2]

[31]

(4]

[5]

[61 "A few good
lines: Suggestive drawing of 3D models,” Com-
puter Graphics Forum (Proc. Eurographics 2003),
vol.22, no.3, 2003.

M. Pauly, R. Keiser, and M. Gross, "Multi-scale

feature extraction on point-sampled surfaces,”

(71

[8]

[91

[10]

(111

[12]

[13]

[14]

(15]

[16]

[17]

(18]

[19]

(201

[21]

[22]

[23]

123

Computer Graphics Forum (Proc. Eurographics
2003), vol.22, no.3, pp.281-289, 2003.

H. Xu, N. Gossett, and B. Chen, "Pointworks:
Abstraction and rendering of sparsely scanned
outdoor environments,” in Proc. Eurographics Sym-
posium on Rendering, pp.45-52, 2004.

M. Son and S. Lee, "Line drawings from 2D
images,” Journal of KIISE :@ Computer Systems
and Theory, vol34, no.l2, pp656-673, 2007, in
Korean.

M. Son, H. Kang, Y. Lee, and S. Lee, "Abstract
line drawings from 2D images,” in Proc. Pacific
Graphics 2007, pp.333-342, 2007.

P. Litwinowicz, "Processing images and video for
an impressionist effect,” ACM Computer Graphics
(Proc. SIGGRAPH ’'97), pp.151-158, 1997.

C. Curtis, S. Anderson, J. Seims, K. Fleischer,
and D. Salesin, "Computer-generated watercolor,”
ACM Computer Graphics (Proc. SIGGRAPH '97),
pp.421-430, 1997.

A. Hertzmann, "Painterly rendering with curved
brush strokes of multiple sizes,” ACM Computer
Graphics (Proc. SIGGRAPH ’98), pp.453-460, 1998.
B. Gooch, G. Coombe, and P. Shirley, "Artistic
vision: Painterly rendering using computer vision
techniques,” in Proc Non-Photorealistic Animation
and Rendering, pp.83-90, 2002.

A. Hertzmann, "Paint by relaxation,” in Proc
Computer Graphics International, pp.47-54, 2001.
J. Hays and 1. Essa, "Image and video-based
painterly animation,” in Proc. Non-Photorealistic
Animation and Rendering, pp.113-120, 2004.

H. Kang, C. Chui, and U. Chakraborty, "A unified
scheme for adaptive stroke-based rendering,” The
Visual Computer, vol.22, no.9, pp.814-824, 2006.

M. Salisbury, S. Anderson, R. Barzel, and D.
Salesin, "Interactive pen-and-ink illustration,”
ACM Computer Graphics (Proc. SIGGRAPH
'94), pp.101-108, 1994.

M. Salisbury, C. Anderson, D. Lischinske, and D.
Salesin, "Scale-dependent reproduction of pen-
and-ink illustrations,” ACM Computer Graphics
(Proc. SIGGRAPH '96), pp.461-468, 1996.

M. Salisbury, M. Wong, J. Hughes, and D. Salesin,
"Orientable textures for image-based pen-and-ink
illustration,” ACM Computer Graphics (Proc SIG-
GRAPH ’97), pp.401-406, 1997.

M. Sousa and]. Buchanan, "Observational models
of graphite pencil materials,” Computer Graphics
Forum, vol.19, no.1, pp.27-49, 2000.

F. Durand, V. Ostromoukhov, M. Miller, F.
Duranleay, and J. Dorsey, "Decoupling strokes and
high-level attributes for interactive traditional
drawing,” in Proc. 12th Eurographics Workshop
on Rendering, London, June 2001, pp.71-82.

V. Ostromoukhov, "Digital facial engraving,” ACM

124

[24]

[25)

[26]

[27]

[28]

[29]

[301

[31]

[321

(331

{34]

[35]

(361

{371

[38]

ARFAFH =R A28 D o]E A 37 D A 2 E(0104)

Computer Graphics (Proc. SIGGRAPH '99), pp.
417-424, 1999.

D. DeCarlo and A. Santella, "Stylization and
abstraction of photographs,” ACM Computer Gra-
phics (Proc. SIGGRAPH 2002), pp.769-776, 2002.

J. Canny, "A computational approach to edge
detection,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol.8, no.6, pp.679-698, No-
vember 1986. [Online]. Available: http://portal.acm.
org/citation.cfm? id=11275

D. Comaniciu and P. Meer, "Mean shift: A robust
approach toward feature space analysis,” IEEE
Trans. Pattern Analysis and Machine Intelligence,
vol.24, no.b, pp.603-619, 2002.

J. Wang, Y. Xu, H.-Y, Shum, and M. Cohen,
"Video tooning,” ACM Computer Graphics (Proc.
SIGGRAPH 2004), pp.574-583, 2004.

J. P. Collomosse, D. Rowntree, and P. M. Hall,
"Stroke surfaces: Temporally coherent non-photo-
realistic animations from video,” IEEE Trans.
Visualization and Computer Graphics, vol.1l, no5,
pp.540-549, 2005.

F. Wen, Q. Luan, L. Liang, Y.-Q. Xu, and H.-Y.
Shum, "Color sketch generation,” in Proc. Non-
Photorealistic Animation and Rendering, pp.47-54,
2006.

J. Fischer, D. Bartz, and W. Strasser, "Stylized
augmented reality for improved immersion,” in
Proc. IEEE VR, pp.195-202, 2005.

B. Gooch, E. Reinhard, and A. Gooch, "Human
facial illustrations,” ACM Trans. Graphics, vol.23,
no.l, pp.27-44, 2004.

D. Marr and E. C. Hildreth, "Theory of edge
detection,” in Proc. Royal Soc. London, pp.187-217,
1980.

H. Wimnemoller, S. C. Olsen, and B. Gooch,
"Real-time video abstraction,” ACM Computer
Graphics (Proc. SIGGRAPH 2006), pp.1221-1226,
2006.

J. Shen and S. Castan, "An optimal linear ope-
rator for step edge detection,” Graphical Models
and Image Processing, vol54, no.Z2, pp.112-133,
1992,

C. Rothwell, J. Mundy, W. Hoffman, and V. 1
Nguyen, “Driving vision by topology,” in Proc
International Symposium on Computer Vision,
pp.395-400, 1995.

L. Iverson and S. Zucker, “Logical/linear operators
for image curves,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol.l17, no.10, pp.932-
996, 1995.

S. Smith and J. Brady, "Susan - a new approach
to low-level image processing,” International
Journal of Computer Vision, vol.23, no.l, pp.45-78,
1997.

P. Meer and B. Georgescu, "Edge detection with -

[39]

[40]

[41]

[42]

[43]

[44]

[45]

embedded confidence,” IEEE Trans. Pattern Ana-
lysis and Machine Intelligence, vol.23, no.12, pp.
1351-1365, 2001.

O. Schall, A. Belyaev, and H.-P. Seidel, "Robust
filtering of noisy scattered point data,” in Proc
IEEE/Eurographics Symposium on Point-Based
Graphics, pp.71-77, 2005.

N. J. Mitra and A. Nguyen, "Estimating surface
normals in noisy point cloud data,” in Proc. SCG
03: Nineteenth Annual Symposium on Computa-
tional Geometry.lem plus 0.5em minus 0.4emNew
York, NY, USA: ACM Press, pp.322-328, 2003.

F. Bergholm, "Edge focusing,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol9,
no.6, pp.726-741, 1987.

J. H. Elder and S. W. Zucker, "Local scale control
for edge detection and blur estimation,” IEEE
Trans. Pattern Analysis and Machine Intelligence,
vol.20, no.7, pp.699-716, 1998.

T. Lindeberg, "Edge detection and ridge detection
with automatic scale selection,” Intl J. of Com-
puter Vision, vol.30, pp.117-154, 1998.

A. Orzan, A. Bousseau, P. Barla, and J. Thollot,
"Structure-preserving manipulation of photographs,”
in Non-Photorealistic Animation and Rendering
(Proc. NPAR 2007), 2007, pp.103-110. [Online].
Available: http://artis.imag.fr/Publications/2007/OBBT07
H. Kang, S. Lee, and C. Chui, "Coherent line
drawing,” in Proc. Non-Photorealistic Animation
and Rendering, 2007.

R

2005 29 IIFouistm FHFHFE
THERAD. 2007 29 Z3EIEn A
FEZTIHAAD. 20079 3E~¥A =
Feyiey FAFE TS HAEE A

%

1o &2

19993 29 ¥ IdFHdsgn AFHFI
IHEAD. 20059 8Y EFHUEgw 7
FE S (IAD. 20059 99 ~2006'Q 5
4 EFFTHUgR GAF AT 2006
Qd 58~2007d 64v|A)3 tigtm vha}
% A9 20079 69 ~2007d 108 X

FEojga v 279, 20072 109~20089 28 A
208w BK21 a4 20083 3€~3A ol=dgw n)
ojats wa

k‘”f

¥y F

Planck-Institut fur Informatlk HEAGATYE. 19969 10
4~dA zPFgte AFE A uF

A8A Aoi7E gol oA

%8

19949 290 QAT ARE ek
Ab. 19064 29 BErlEd Waket

o FHAAY. 20029 29 I=FHErIE&Y R
. Aastah(ukal). 20029 3Y9-~2003d 7€

KAIST IERC HMAMF 474, 20039 8
A~2A 25 Be AV ;5

P ol 5 &
0 1983d 29 M-gTistm A ASHE

Ab. 1990 29 @=FHEed ALE
IHAAD, 19953 29 d=Hstrled A
Arstab(abal), 19959 39~1956d 949
City College of New York / CUNY

74, 20039 8¥~2004d 7¥ Max-

3ge) 4

tohe

125

