• 제목/요약/키워드: 2D and 3D models

검색결과 1,649건 처리시간 0.038초

3D-QSAR Studies of 3,5-disubstituted Quinolines Inhibitors of c-Jun N-terminal Kinase-3

  • Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제4권3호
    • /
    • pp.216-221
    • /
    • 2011
  • c-Jun N-terminal kinase-3 (JNK-3) has been shown to mediate neuronal apoptosis and make the promising therapeutic target for neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and other CNS disorders. In order to better understand the structural and chemical features of JNK-3, comparative molecular field analysis (CoMFA) was performed on a series of 3,5-disubstituted quinolines derivatives. The best predictions were obtained CoMFA model ($q^2$=0.707, $r^2$=0.972) and the statistical parameters from the generated 3D-QSAR models were indicated that the data are well fitted and have high predictive ability. The resulting contour map from 3D-QSAR models might be helpful to design novel and more potent JNK3 derivatives.

3D City Modeling Using Laser Scan Data

  • Kim, Dong-Suk;Lee, Kwae-Hi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.505-507
    • /
    • 2003
  • This paper describes techniques for the automated creation of geometric 3D models of the urban area us ing two 2D laser scanners and aerial images. One of the laser scanners scans an environment horizontally and the other scans vertically. Horizontal scanner is used for position estimation and vertical scanner is used for building 3D model. Aerial image is used for registration with scan data. Those models can be used for virtual reality, tele-presence, digital cinematography, and urban planning applications. Results are shown with 3D point cloud in urban area.

  • PDF

다시점 준지도 학습 기반 3차원 휴먼 자세 추정 (Multi-view Semi-supervised Learning-based 3D Human Pose Estimation)

  • 김도엽;장주용
    • 방송공학회논문지
    • /
    • 제27권2호
    • /
    • pp.174-184
    • /
    • 2022
  • 3차원 휴먼 자세 추정 모델은 다시점 모델과 단시점 모델로 분류될 수 있다. 일반적으로 다시점 모델은 단시점 모델에 비하여 뛰어난 자세 추정 성능을 보인다. 단시점 모델의 경우 3차원 자세 추정 성능의 향상은 많은 양의 학습 데이터를 필요로 한다. 하지만 3차원 자세에 대한 참값을 획득하는 것은 쉬운 일이 아니다. 이러한 문제를 다루기 위해, 우리는 다시점 모델로부터 다시점 휴먼 자세 데이터에 대한 의사 참값을 생성하고, 이를 단시점 모델의 학습에 활용하는 방법을 제안한다. 또한, 우리는 각각의 다시점 영상으로부터 추정된 자세의 일관성을 고려하는 다시점 일관성 손실함수를 제안하여, 이것이 단시점 모델의 효과적인 학습에 도움을 준다는 것을 보인다. Human3.6M과 MPI-INF-3DHP 데이터셋을 사용한 실험은 제안하는 방법이 3차원 휴먼 자세 추정을 위한 단시점 모델의 학습에 효과적임을 보여준다.

Accuracy of three-dimensional periodontal ligament models generated using cone-beam computed tomography at different resolutions for the assessment of periodontal bone loss

  • Hangmiao Lyu;Li Xu;Huimin Ma;Jianxia Hou;Xiaoxia Wang;Yong Wang;Yijiao Zhao;Weiran Li;Xiaotong Li
    • 대한치과교정학회지
    • /
    • 제53권2호
    • /
    • pp.77-88
    • /
    • 2023
  • Objective: To develop a method for generating three-dimensional (3D) digital models of the periodontal ligament (PDL) using 3D cone-beam computed tomography (CBCT) reconstruction and to evaluate the accuracy and agreement of the 3D PDL models in the measurement of periodontal bone loss. Methods: CBCT data collected from four patients with skeletal Class III malocclusion prior to periodontal surgery were reconstructed at three voxel sizes (0.2 mm, 0.25 mm, and 0.3 mm), and 3D tooth and alveolar bone models were generated to obtain digital PDL models for the maxillary and mandibular anterior teeth. Linear measurements of the alveolar bone crest obtained during periodontal surgery were compared with the digital measurements for assessment of the accuracy of the digital models. The agreement and reliability of the digital PDL models were analyzed using intra- and interexaminer correlation coefficients and Bland-Altman plots. Results: Digital models of the maxillary and mandibular anterior teeth, PDL, and alveolar bone of the four patients were successfully established. Relative to the intraoperative measurements, linear measurements obtained from the 3D digital models were accurate, and there were no significant differences among different voxel sizes at different sites. High diagnostic coincidence rates were found for the maxillary anterior teeth. The digital models showed high intra- and interexaminer agreement. Conclusions: Digital PDL models generated by 3D CBCT reconstruction can provide accurate and useful information regarding the alveolar crest morphology and facilitate reproducible measurements. This could assist clinicians in the evaluation of periodontal prognosis and establishment of an appropriate orthodontic treatment plan.

가상 의복 코디네이션을 위한 개인 3D캐릭터의 구성 (Construction of the Personal 3D Characters for Virtual Clothing Coordination)

  • 최창석;김효숙
    • 한국의류학회지
    • /
    • 제27권9_10호
    • /
    • pp.1015-1025
    • /
    • 2003
  • This paper proposes a method for constructing the virtual characters adopting the personal body types for the clothing coordination. At first, the method produces the 38 kinds of the Korean 3D body models considering sex, ages and body types, and constructs model DB. We select a model similar to the personal body size from DB and deform the selected model according to body size. The method deforms the model linearly for height 12 items, width 6 items, depth 5 items and round 13 items, and constructs the personal character fitted to the personal body size. The preprocess for model deformation consists of grouping for body part and establishing the feature points. Linear deformation for each group leads us to easy construction of the virtual personal characters. This method has two advantages as follows: 1. Large reduction of man power, cost and time for DB construction of the body 3D models, since the preprocess permits us to effectively use the various body models whose geometrical structures are different, 2 Suitability to Web-based clothing coordination, since the body deformation method is simple and its speed is very high.

Seismic response of complex 3D steel buildings with welded and post-tensioned connections

  • Reyes-Salazar, Alfredo;Ruiz, Sonia E.;Bojorquez, Eden;Bojorquez, Juan;Llanes-Tizoc, Mario D.
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.217-243
    • /
    • 2016
  • The linear and nonlinear seismic responses of steel buildings with perimeter moment resisting frames and welded connections (WC) are estimated and compared with those of buildings with post-tensioned connections (PC). Two-dimensional (2D) and three-dimensional (3D) structural representations of the buildings as well as global and local response parameters are considered. The seismic responses and structural damage of steel buildings with PC may be significantly smaller than those of the buildings with typical WC. The reasons for this are that the PC buildings dissipate more hysteretic energy and attract smaller inertia forces. The response reduction is larger for global than for local response parameters. The reduction may significantly vary from one structural representation to another. One of the main reasons for this is that the energy dissipation characteristics are quite different for the 2D and 3D models. In addition, in the case of the 3D models, the contribution of each horizontal component to the axial load on an specific column may be in phase each other during some intervals of time, but for some others they may be out of phase. It is not possible to observe this effect on the 2D structural formulation. The implication of this is that 3D structural representation should be used while estimating the effect of the PC on the structural response. Thus, steel frames with post-tensioned bolted connections are a viable option in high seismicity areas due to the fact that brittle failure is prevented and also because of their reduced response and self-centering capacity.

3D 특수 분장 마스크 시뮬레이션 프로그램 개발과 활용 (제2보) (3D Special Makeup Mask Program Development and Utilization (Ver. 2))

  • 방기정;김진서
    • 패션비즈니스
    • /
    • 제19권5호
    • /
    • pp.63-76
    • /
    • 2015
  • The purpose of this study was to design a training program for utilization of 3D special makeup mask program. This study was conducted with a 3D computer graphics software program, for special makeup mask using a variety of creative educational models and case study with comparative analysis. The makeup program applied to the majors and liberal arts classes for program design. Inthis study, the selected major courses included ' stage make up ', make up application', and illustrations and color '. Students were required to take a class targeted to questionnaire completion and analysis. The research method included literature search, and Internet navigation, of experimental research. The research targeted select college students attending a 4-year university located in Dae-jeon, Korea. ETRI's "3D mask special makeup simulation program" was used in support. A survey of the study conducted from September 1, 2013, to August 30, 2014, showed a total of 94 additional statistical analyses. First, grade 3 44.6% was attained by 91.7% of the first year student majoring in liberal arts classes, Second, students' in the 3D special dress up mask program Interestingly, attained high recognition in its mastering, usability, and creativity. Furthermore, the major student satisfaction was higher for the '3D special makeup mask program. Third, students '3D special dress up was one of the biggest advantages of the program', the mask ' that models 3D ' faces. In addition, the student's delicate dress called for critical technology skills. It is thought to be suitable for practical training and improving the efficiency and performance if applied to universities and beauty schools, such as the regular high school curriculum through research.

거시적 모델을 이용한 내력벽 시스템의 Pushover 해석 - 2차원과 3차원 해석 모델링의 비교 (Pushover Analysis of Bearing Wall System with Macroscopic Models - For Comparisons of 2D and 3D Analysis Modelling)

  • 이영욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.329-332
    • /
    • 2006
  • To study the effect of the macroscopic TVLEM(Three Vertical Line Element Model) which is developed in 2D, a bearing wall system is selected and 2D and 3D pushover analyses are carried out. In 2D model, the participating width of a flage wall to lateral resistance is modelled based on Paulay's effective width. From the comparisons of roof displacements, 2D model which uses the effective width of flange wall has better prediction and less analysis time than 3D model which has intrinsically the full width of the flange that causes higher stiffness and strength and shorter deformation capacity than 2D model.

  • PDF

Design of Novel JNK3 Inhibitors Based on 3D-QSAR In Silico Model

  • Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제5권1호
    • /
    • pp.6-12
    • /
    • 2012
  • c-Jun N-terminal kinase-3 (JNK-3) has been identified as a promising target for neuronal apoptosis and has the effective therapeutic for neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and other CNS disorders. Herein, we report the essential structural and chemical parameters for JNK-3 inhibitors utilizing comparative molecular field similarity indices analysis (CoMSIA) using the derivatives of 3,5-disubstituted quinolines. The best predictions were obtained CoMSIA model (q2=0.834, r2=0.987) and the statistical parameters from the generated 3D-QSAR models were indicated that the data are well fitted and have high predictive ability. The resulting contour map from 3D-QSAR models might be helpful to design novel and more potent JNK3 derivatives.

ASMs을 이용한 특징점 추출에 기반한 3D 얼굴데이터의 정렬 및 정규화 : 정렬 과정에 대한 정량적 분석 (3D Face Alignment and Normalization Based on Feature Detection Using Active Shape Models : Quantitative Analysis on Aligning Process)

  • 신동원;박상준;고재필
    • 한국CDE학회논문집
    • /
    • 제13권6호
    • /
    • pp.403-411
    • /
    • 2008
  • The alignment of facial images is crucial for 2D face recognition. This is the same to facial meshes for 3D face recognition. Most of the 3D face recognition methods refer to 3D alignment but do not describe their approaches in details. In this paper, we focus on describing an automatic 3D alignment in viewpoint of quantitative analysis. This paper presents a framework of 3D face alignment and normalization based on feature points obtained by Active Shape Models (ASMs). The positions of eyes and mouth can give possibility of aligning the 3D face exactly in three-dimension space. The rotational transform on each axis is defined with respect to the reference position. In aligning process, the rotational transform converts an input 3D faces with large pose variations to the reference frontal view. The part of face is flopped from the aligned face using the sphere region centered at the nose tip of 3D face. The cropped face is shifted and brought into the frame with specified size for normalizing. Subsequently, the interpolation is carried to the face for sampling at equal interval and filling holes. The color interpolation is also carried at the same interval. The outputs are normalized 2D and 3D face which can be used for face recognition. Finally, we carry two sets of experiments to measure aligning errors and evaluate the performance of suggested process.