• Title/Summary/Keyword: 2D CAT

Search Result 159, Processing Time 0.03 seconds

Biochemical Characterization of an Extracellular ${\beta}$-Glucosidase from the Fungus, Penicillium italicum, Isolated from Rotten Citrus Peel

  • Park, Ah-Reum;Hong, Joo-Hee;Kim, Jae-Jin;Yoon, Jeong-Jun
    • Mycobiology
    • /
    • v.40 no.3
    • /
    • pp.173-180
    • /
    • 2012
  • A ${\beta}$-glucosidase from Penicillium italicum was purified with a specific activity of 61.8 U/mg, using a chromatography system. The native form of the enzyme was an 88.5-kDa tetramer with a molecular mass of 354 kDa. Optimum activity was observed at pH 4.5 and $60^{\circ}C$, and the half-lives were 1,737, 330, 34, and 1 hr at 50, 55, 60, and $65^{\circ}C$, respectively. Its activity was inhibited by 47% by 5 mM $Ni^{2+}$. The enzyme exhibited hydrolytic activity for p-nitrophenyl-${\beta}$-D-glucopyranoside (pNP-Glu), p-nitrophenyl-${\beta}$-D-cellobioside, p-nitrophenyl-${\beta}$-D-xyloside, and cellobiose, however, no activity was observed for p-nitrophenyl-${\beta}$-D-lactopyranoside, p-nitrophenyl-${\beta}$-D-galactopyranoside, carboxymetyl cellulose, xylan, and cellulose, indicating that the enzyme was a ${\beta}$-glucosidase. The $k_{cat}/K_m\;(s^{-1}mM^{-1})$ values for pNP-Glu and cellobiose were 15,770.4 mM and 6,361.4 mM, respectively. These values were the highest reported for ${\beta}$-glucosidases. Non-competitive inhibition of the enzyme by both glucose ($K_i=8.9mM$) and glucono-${\delta}$-lactone ($K_i=11.3mM$) was observed when pNP-Glu was used as the substrate. This is the first report of non-competitive inhibition of ${\beta}$-glucosidase by glucose and glucono-${\delta}$-lactone.

Effect of JiaoTeng-Yuan(交藤圓) on Oxidation Stress Caused by D-galactose in Sprague-Dawley Rats (교등원(交藤圓)이 백서(白鼠)의 산화유발(酸化誘發)을 방어(防禦)하는 작용(作用)에 관(關)한 연구(硏究))

  • Lee Song-Shil;Lee Sang-Jae;Kim Kwang-Ho
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.8 no.2
    • /
    • pp.141-156
    • /
    • 2004
  • Objectives : JianTeng-Yuan(交藤圓) is said to be a prescription for preservation of health in ${\ulcorner}$HuaTuo ZhongZangJing(華陀 中藏經)${\lrcorner}$. It is known to have the effect of Bu-Shen(補腎: strengthening kidney) and Yi-Shou(益壽: prolonging the span of one's life). This study investigates whether JTY is effective on inhibition of oxidation stress. Methods : Sprague-Dawley Rats(12-week-old, weight $300{\pm}20g$) were divided into 3 groups. Normal group(n=8) was injected PBS(1ml/body, s.c) at the back neck's skin. Control group(n=8) was injected D-galactose(50mg/kg, 1ml PBS/body, s.c) to induce pathological animals. JTY group was injected the same treatment for the Control group, and fed containing JTY(10%). The whole groups were treated 1 time per day for 6 weeks. After rats were sacrificed and anti-oxidant enzyme(SOD, CAT, G-px) activity, GSH quantity of RBC and tissue(heart, liver and kidney), plasma Vit-C quantity were examined. Besides, the MDA levels of liver and kidney, lipofuscin of heart and endurance of erythrocyte membrane were measured. Results : In the JTY group, RBC's SOD activity decline was halted by 21% of the normal level, compared to the control group ; G-px activity(unit/g of Hb) increased significantly, compared to the normal group ; and the level of Vit-C in plasma increased by 16%. Heart's SOD activity was kept at the same level as that of the normal group ; and CAT activity decline was halted by 26%. Kidney's CAT and G-px activities were kept at the same level as that shown in the normal group, implying the existence of halting effect. Liver also showed a slight halting effect against the decline of anti-oxidant ability, but the effect was not significant(a=0.05). A comparison between the levels of peroxide in SD rats showed that the level of TBARS in plasma increased significantly in the control group and that it was normal in the JTY group. The livers in the JTY group, compared to those in the control group, showed 36% halting effect of the normal level while their kidney's indicated the level significantly lower than the normal level. Heart's lipofuscin increased significantly in the control group, but was alike in both the JTY and the normal groups. Endurance of erythrocyte membrane(%) decreased significantly in the control group while it was kept at the similar level in both the JTY and the normal groups, indicating the halting effect. Conclusions : This study suggests that JTY is effective to defend oxidation stress caused by D-galactose in the animals. It showed that the anti-oxidant ability was maintained and strengthened. On the other hand, it reduced the level of peroxide in animals. In sum, JTY appeared to have the equilibrium normal physiological function in SD rat.

  • PDF

GENETIC AND BIOCHEMICAL ANALYSIS OF A THERMOSTABLE CHITOSANASE FROM Bacillus sp. CK4

  • Yoon, Ho-Geun;Cho, Hong-Yon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.157-167
    • /
    • 2000
  • A thermostable chitosanase gene from the isolated strain, Bacillus sp. CK4, was cloned, and its complete DNA sequence was determined. The thermostable chitosanase gene was composed of an 822-bp open reading frame which encodes a protein of 242 amino acids and a signal peptide corresponding to a 30 kDa enzyme in size. The deduced amino acid sequence of the chitosanase from Bacillus sp. CK4 exhibits 76.6%, 15.3%, and 14.2% similarities to those from Bacillus subtilis, Bacillus ehemensis, and Bacillus circulans, respectively. C-terminal homology analysis shows that Bacillus sp. CK4 belongs to the Cluster III group with Bacillus subtilis. The size of the gene was similar to that of a mesophile, Bacillus subtilis showing a higher preference for codons ending in G or C. The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues were changed to E50D/Q, E62D/Q, and D66N/E by site-directed mutagenesis. The D66N/E mutants enzymes had remarkably decreased kinetic parameters such as $V_{max}$ and k$\sub$cat/, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three cysteine residues at position 49, 72, and 211. Titration of the Cys residues with DTNB showed that none of them were involved in disulfide bond. The C49S and C72S mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However the half-life of the C211S mutant enzyme was less than 60 min at 80$^{\circ}C$, while that of the wild type enzyme was about 90 min. Moreover, the residual activity of C211S was substantially decreased by 8 M urea, and fully lost catalytic activity by 40% ethanol. These results show that the substitution of Cys with Ser at position 211 seems to affect the conformational stability of the chitosanase.

  • PDF

Effects of Astragalus membranaceus roots supplementation on growth performance, serum antioxidant and immune response in finishing lambs

  • Hao, Xiaoyan;Wang, Pengju;Ren, Youshe;Liu, Gentang;Zhang, Jianxin;Leury, Brian;Zhang, Chunxiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.965-972
    • /
    • 2020
  • Objective: Astragalus membranaceus root is a well-known traditional Chinese herbal medicine with many biological active constituents. This study was conducted to examine the effects of Astragalus membranaceus root powder (AMP) on growth performance, serum antioxidant and immune response in finishing lambs. Methods: A total of thirty-six Guangling fat-tailed ram lambs (body weight = 19±2 kg, mean±standard deviation) were randomly assigned to one of six treatments for a 40 d feeding period, with the first 10 d for adaptation. Treatments consisted of the lambs' basal diets with addition of 0, 5, 10, 15, 20, and 30 g/kg of diet of AMP. Results: Response to supplementation level of AMP was quadratic (p≤0.032) for final weight and ADG with the greatest at 10 g/kg of diet, but dry matter intake was not affected (p≥0.227) by treatments. The increase of AMP supplementation resulted in a quadratic response in contents of triglyceride and creatinine (p<0.05), with the lowest values for 10 and 20 g/kg of diet, respectively. A linear and quadratic decrease was observed in activity of alkaline phosphatase in serum of lambs. As the AMP supplementation increased, the activities of total superoxide dismutase and total antioxidant capacity increased linearly (p≤0.018) and hydroxyl radical (OH-) decreased linearly (p = 0.002). For catalase (CAT) and malondialdehyde (MDA), quadratic (p≤0.001) effects were observed among treatments, with the greatest CAT and lowest MDA values at 10 g/kg AMP. Additionally, supplementing AMP up to a level of 10 or 15 g/kg of diet quadratically increased immunoglobulin and interleukin contents in the serum. Conclusion: The results indicated that AMP can be used as natural feed additive in the ration of lambs to improve ADG, antioxidant status, and immune functions, and the optimal dose was 10 g/kg of diet under the condition of this experiment.

Computational Optimization of Bioanalytical Parameters for the Evaluation of the Toxicity of the Phytomarker 1,4 Napthoquinone and its Metabolite 1,2,4-trihydroxynapththalene

  • Gopal, Velmani;AL Rashid, Mohammad Harun;Majumder, Sayani;Maiti, Partha Pratim;Mandal, Subhash C
    • Journal of Pharmacopuncture
    • /
    • v.18 no.2
    • /
    • pp.7-18
    • /
    • 2015
  • Objectives: Lawsone (1,4 naphthoquinone) is a non redox cycling compound that can be catalyzed by DT diaphorase (DTD) into 1,2,4-trihydroxynaphthalene (THN), which can generate reactive oxygen species by auto oxidation. The purpose of this study was to evaluate the toxicity of the phytomarker 1,4 naphthoquinone and its metabolite THN by using the molecular docking program AutoDock 4. Methods: The 3D structure of ligands such as hydrogen peroxide ($H_2O_2$), nitric oxide synthase (NOS), catalase (CAT), glutathione (GSH), glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH) and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) were drawn using hyperchem drawing tools and minimizing the energy of all pdb files with the help of hyperchem by $MM^+$ followed by a semi-empirical (PM3) method. The docking process was studied with ligand molecules to identify suitable dockings at protein binding sites through annealing and genetic simulation algorithms. The program auto dock tools (ADT) was released as an extension suite to the python molecular viewer used to prepare proteins and ligands. Grids centered on active sites were obtained with spacings of $54{\times}55{\times}56$, and a grid spacing of 0.503 was calculated. Comparisons of Global and Local Search Methods in Drug Docking were adopted to determine parameters; a maximum number of 250,000 energy evaluations, a maximum number of generations of 27,000, and mutation and crossover rates of 0.02 and 0.8 were used. The number of docking runs was set to 10. Results: Lawsone and THN can be considered to efficiently bind with NOS, CAT, GSH, GR, G6PDH and NADPH, which has been confirmed through hydrogen bond affinity with the respective amino acids. Conclusion: Naphthoquinone derivatives of lawsone, which can be metabolized into THN by a catalyst DTD, were examined. Lawsone and THN were found to be identically potent molecules for their affinities for selected proteins.

Hepatoprotective Effect of Flavonol Glycosides Rich Fraction from Egyptian Vicia calcarata Desf. Against $CCl_4$-Induced Liver Damage in Rats

  • Singab, Abdel Nasser B.;Youssef, Diaa T.A.;Noaman, Eman;Kotb, Saeed
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.791-798
    • /
    • 2005
  • The hepatoprotective activity of flavonol glycosides rich fraction (F-2), prepared from 70% alcohol extract of the aerial parts of V calcarata Desf., was evaluated in a rat model with a liver injury induced by daily oral administration of $CCl_4$ (100 mg/kg, b.w) for four weeks. Treatment of the animals with F-2 using a dose of (25 mg/kg, b.w) during the induction of hepatic damage by $CCl_4$ significantly reduced the indices of liver injuries. The hepatoprotective effects of F-2 significantly reduced the elevated levels of the following serum enzymes: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). The antioxidant activity of F-2 markedly ameliorated the antioxidant parameters including glutathione (GSH) content, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), plasma catalase (CAT) and packed erythrocytes glucose-6-phosphate dehydrogenase (G6PDH) to be comparable with normal control levels. In addition, it normalized liver malondialdehyde (MDA) levels and creatinine concentration. Chromatographic purification of F-2 resulted in the isolation of two flavonol glycosides that rarely occur in the plant kingdom, identified as quercetin-3,5-di-O-$\beta$-D-diglucoside (5) and kaempferol-3,5-di-O-$\beta$-D-diglucoside (4) in addition to the three known compounds identified as quercetin-3-O-$\alpha$-L-rhamnosyl- (${\rightarrow}6$)-$\beta$-D-glucoside [rutin, 3], quercetin-3-O-$\beta$-D-glucoside [isoquercitrin, 2] and kaempferol-3-O-$\beta$-D-glucoside [astragalin, 1]. These compounds were identified based on interpretation of their physical, chemical, and spectral data. Moreover, the spectrophotometric estimation of the flavonoids content revealed that the aerial parts of the plant contain an appreciable amount of flavonoids (0.89%) calculated as rutin. The data obtained from this study revealed that the flavonol glycosides of F-2 protect the rat liver from hepatic damage induced by $CCl_4$ through inhibition of lipid peroxidation caused by $CCl_4$ reactive free radicals.

Kinetic Analyses for Enzymatic Properties of Trypsins Purified from Dark-Fleshed Fish (혈합육어 Trypsin의 효소적 성질에 대한 반응속도론적 해석)

  • CHO Deuk-Moon;HEU Min-Soo;KIM Hyeung-Rak;KIM Doo-Sang;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.1
    • /
    • pp.64-70
    • /
    • 1996
  • Kinetic properties of typsins purified from dark-fleshed fish (anchovy, mackerel, yellowfin tuna, and albacore) were examined and analyzed on $benzoyl-_{D,L}-arginine-p-nitroanilide\;(BAPNA)$. The values of Km' and $k_{cat}$ of the purified trypsins from the four dark-fleshed fish were found to be $49.3{\mu}M$ and $90.9\;min^{-1}$ for anchovy, $53.7{\mu}M$ and $61.2min-^{-1}$ for mackerel A, $96.5{\mu}M$ and $76.6min^{-1}$ for mackerel B, $62.8{\mu}M$ and $46.6min^{-1}$ for yellowfin tuna, and $98.3{\mu}M$ and $47.7min^{-1}$ for albacore, respectively. The values of $K_i$ on $tosyl-_L-lysine$ chloromethyl ketone (TLCK) were determined to be $20.90{\mu}M$ for anchovy trypsin, $2.86{\mu}M$ for mackerel trypsin A, $3.90{\mu}M$ for mackerel trypsin B, $0.96{\mu}M$ for yellowfin tuna trypsin, and $1.82{\mu}M$ for albacore trypsin. Thus yellowfin tuna trypsin was the most sensitive to TLCK among all trypsins. The activities and catalytic efficiency of the trypsins purified from the temperate zone fish, anchovy and mackerel, were higher than those of the trypsins purified from yellowfin tuna and albacore which migrate widely from the tropic zone to the temperate zone.

  • PDF

A 43 kD Protein Isolated from the Herb Cajanus indicus L Attenuates Sodium Fluoride-induced Hepatic and Renal Disorders in Vivo

  • Manna, Prasenjit;Sinha, Mahua;Sil, Parames C.
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.382-395
    • /
    • 2007
  • The herb, Cajanus indicus L, is well known for its hepatoprotective action. A 43 kD protein has been isolated, purified and partially sequenced from the leaves of this herb. A number of in vivo and in vitro studies carried out in our laboratory suggest that this protein might be a major component responsible for the hepatoprotective action of the herb. Our successive studies have been designed to evaluate the potential efficacy of this protein in protecting the hepatic as well as renal tissues from the sodium fluoride (NaF) induced oxidative stress. The experimental groups of mice were exposed to NaF at a dose of 600 ppm through drinking water for one week. This exposure significantly altered the activities of the antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and the cellular metabolites such as reduced glutathione (GSH), oxidized glutathione (GSSG), total thiols, lipid peroxidation end products in liver and kidney compared to the normal mice. Intraperitoneal administration of the protein at a dose of 2 mg/kg body weight for seven days followed by NaF treatment (600 ppm for next seven days) normalized the activities of the hepato-renal antioxidant enzymes, the level of cellular metabolites and lipid peroxidation end products. Post treatment with the protein for four days showed that it could help recovering the damages after NaF administration. Time-course study suggests that the protein could stimulate the recovery of both the organs faster than natural process. Effects of a known antioxidant, vitamin E, and a non-relevant protein, bovine serum albumin (BSA) have been included in the study to validate the experimental data. Combining all, result suggests that NaF could induce severe oxidative stress both in the liver and kidney tissues in mice and the protein possessed the ability to attenuate that hepato-renal toxic effect of NaF probably via its antioxidant activity.

The Effects of Replacing Inorganic with a Lower Level of Organically Complexed Minerals (Cu, Zn and Mn) in Broiler Diets on Lipid Peroxidation and Antioxidant Defense Systems

  • Aksu, Devrim Saripinar;Aksu, Taylan;Ozsoy, Bulent;Baytok, Erol
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.1066-1072
    • /
    • 2010
  • In this study, the effects of replacing inorganic copper, zinc and manganese with different levels of organic complexes of the same trace minerals on the lipid peroxidation and antioxidant defense systems in broilers were investigated. Two-hundred Ross-308 one-day-old broiler chickens were placed on controlled diets until 42 d of age. The experimental animals were divided into four groups comprising three experimental groups and one control group, each consisting of 50 chickens. All groups were also divided into five subgroups each containing 10 broiler chicks. The mineral content of the control group diet was controlled using a standard inorganic mineral premix with supplement levels and sources of trace minerals typical of commercial broiler diets according to the National Research Council (NRC) (containing 8 mg Cu as $CuSO_4$, 40 mg Zn as $ZnSO_4$, and 60 mg Mn as MnO, per kg). In the experimental diets, mineral premix was also comprised of inorganic formulations, except for those of Cu, Zn and Mn. Organically-complexed Cu, Zn, and Mn were separately added to the basal diet at 1/3 (L1), 2/3 (L2) and 3/3 (L3) levels with respect to the NRC recommendation, as Bioplex $Cu^{TM}$, Bioplex $Zn^{TM}$, Bioplex $Mn^{TM}$. At the end of the trial, the plasma Zn level significantly increased when the plasma Cu level significantly decreased (p<0.05) in chickens fed at 2/3 and 3/3 levels of organically complexed minerals. The liver trace mineral concentrations were significantly higher in chickens fed inorganic trace minerals in comparison to those fed organically-complexed minerals. The plasma malondialdehyde (MDA) level of experimental chickens was decreased in groups receiving levels of organic Cu, Zn and Mn in comparison to those fed inorganic forms (p<0.01). The erythrocyte superoxide dismutase (SOD) activity was higher in all groups receiving the organic mineral supplements in comparison to those fed inorganic forms (p<0.01). No differences were observed on either the erythrocyte catalase (CAT) activity or the plasma ceruloplasmin (Cp) levels, and the liver MDA levels and liver CAT and SOD activities in any of the groups that received the organic supplements of Cu, Zn, and Mn. It was concluded that supplementation of lower levels of organically-complexed copper, zinc, and manganese instead of their inorganic forms in diets had no negative effects on the antioxidant defense system in broilers.

Chronic cold stress-induced myocardial injury: effects on oxidative stress, inflammation and pyroptosis

  • Hongming Lv;Yvxi He;Jingjing Wu; Li Zhen ;Yvwei Zheng
    • Journal of Veterinary Science
    • /
    • v.24 no.1
    • /
    • pp.2.1-2.14
    • /
    • 2023
  • Background: Hypothermia is a crucial environmental factor that elevates the risk of cardiovascular disease, but the underlying effect is unclear. Objectives: This study examined the role of cold stress (CS) in cardiac injury and its underlying mechanisms. Methods: In this study, a chronic CS-induced myocardial injury model was used; mice were subjected to chronic CS (4℃) for three hours per day for three weeks. Results: CS could result in myocardial injury by inducing the levels of heat shock proteins 70 (HSP70), enhancing the generation of creatine phosphokinase-isoenzyme (CKMB) and malondialdehyde (MDA), increasing the contents of tumor necrosis factor-α (TNF-α), high mobility group box 1 (HMGB1) interleukin1b (IL-1β), IL-18, IL-6, and triggering the depletion of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Multiple signaling pathways were activated by cold exposure, including pyroptosis-associated NOD-like receptor 3 (NLRP3)-regulated caspase-1-dependent/Gasdermin D (GSDMD), inflammation-related toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK), as well as oxidative stressinvolved thioredoxin-1/thioredoxin-interacting protein (Txnip) signaling pathways, which play a pivotal role in myocardial injury resulting from hypothermia. Conclusions: These findings provide new insights into the increased risk of cardiovascular disease at extremely low temperatures.