• Title/Summary/Keyword: 26GHz

Search Result 351, Processing Time 0.024 seconds

A Design of Dual-band Microstrip Patch Antenna in Multilayered Planner Structures for IMT-2000 systems (IMT-2000 주파수대역에서 이중공진 적층구조 마이크로스트립 패치 안테나의 설계 및 제작)

  • 오상진;윤중한;이상목;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.7B
    • /
    • pp.907-915
    • /
    • 2001
  • 본 논문에서는 차세대 이동통신인 IMT-2000 (하향: 1.885GHz∼2.025GHz) 주파수대역에서 동작하는 정사각형 적층구조 마이크로스트립 안테나를 설계 및 제작 측정하였다. 송/수신 주파수대역이 서로 상이한 IMT-2000 주파수대역에서 동작하도록 하기 위해 시뮬레이터를 사용하여 이중공진 안테나를 설계하였으며 최적화된 파라미터를 가지고 실제 제작 및 측정하였다. 측정된 결과는 다음과 같다. 공진주파수는 1.8475GHz, 2.2GHz에서 각각 나타났으며 대역폭은 각각 10.2%와 7.8%에 이르는 결과를 얻었다. 그리고 반사계수는 -18dB, -27dB로 나타났다. 이득은 시뮬레이터를 이용한 결과를 보면 8dB∼10dB의 높은 이득을 얻을 수 있음을 알 수가 있다.

  • PDF

Fabrication of the Hihg Power SiGe Heterojunction Bipolar Transistors using APCVD (상압 화학 기상 증착기를 이용한 고출력 SiGe HBT제작)

  • 한태현;이수민;조덕호;염병령
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.26-28
    • /
    • 1996
  • A high power SiGe HBT has been fabricated using APCVD(Atmospheric Pressure Chemical Vapor Deposition) and its perfermanoe has been analysed. The composition of Ge in the SiGe base was graded from 0% at the emitter-base junction to 20% at the base-collector junction. As a base electrode, titanium disilicide(TiSi$_2$) was used to reduce the extrinsic base resistance. The SiGe HBT with an emitter area of 2$\times$8${\mu}{\textrm}{m}$$^2$typically has a cutoff frequency(f$_{T}$) of 7.0GHz and a maximun oscillation frequency(f$_{max}$) of 16.1GHz with a pad de-embedding. The packaged high power SiGe HBT with an emitter area of 2xBx80${\mu}{\textrm}{m}$$^2$typically shows a cutoff frequency of 4.7GHz and a maximun oscillation frequency of 7.1GHz at Ic of 115mA.A.A.

  • PDF

Multi-Band Antenna Using Folded Monopole Line and Log-Periodic Structure (폴디드 모노폴 선로가 부착된 대수주기 구조를 이용한 다중대역 안테나)

  • Lee, hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.3
    • /
    • pp.142-146
    • /
    • 2014
  • In this paper, an antenna which has quad band in GSM/DCS/PCS/Bluetooth is proposed. This structure is designed with miniaturization for wide band characteristic based on monopole antenna and log-periodic toothed trapezoid patch antenna which has slots. To achieve multi-bandwidth is used the microstrip line on the substrate. An antenna size is $35mm{\times}20mm$ on FR-4(${\varepsilon}r=4.4$) ground substrate of $35mm{\times}75mm{\times}1mm$ size. And proposed antenna is satisfied with impedance bandwidth(VSWR ${\leq}$ 3). The simulated maximum radiation gain is 1.92 dBi, 3.26 dBi, 3.97 dBi at the center frequency of 0.92 GHz, 1.97 GHz, 2.45 GHz, respectively.

Miniaturized CPW-fed Folded Slot Antenna (소형화된 CPW 급전 폴디드 슬롯 안테나)

  • Woo, Hee-Sung;Shin, Dong-Gi;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.142-147
    • /
    • 2020
  • In the present study, we proposed newly a CPW-fed miniaturized folded-slot antenna with open ended slot for WCDMA (1.92 ~ 2.17 GHz) band. Open-ended slots and asymmetric ground plane are used for a miniaturization of the antenna, and the proposed antenna was designed and fabricated on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of 35×70 ㎟. The measured impedance bandwidths (|S11| ≤ -10 dB) of fabricated antenna is about 400 MHz (1.86 ~ 2.26 GHz), which sufficiently satisfied interested band. Furthermore, the gain of antenna is 2 dBi and this antenna shows a similar radiation patterns of the dipole antenna. Therefore, it is expected to be used usefully in wireless and mobile communication device.

A 3 Stage MMIC Low Noise Amplifier for the Ka Band Satellite Communications and BWLL System (Ka 대역 위성통신 및 BWLL 시스템용 3단 MMIC 저잡음 증폭기 설계 및 제작)

  • 염인복;정진철;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.71-76
    • /
    • 2001
  • A Ka Band 3-stage MMIC (Monolithic Microwave Integrated Circuits) LNA (Low Noise Amplifiers) has been designed and fabricated far the Ka band satellite communications and BWLL(Broad Band Wireless Local Loop)system. The MMIC LNA consists of two single-ended type amplification stages and one balanced type amplification stage to satisfy noise figure, high gain and amplitude linearity. The 0.15${\mu}{\textrm}{m}$ pHEMT has been used to provide a ultra low noise figure and high gain amplification. Series and Shunt feedback circuits and λ/4 short lines were inserted to ensure high stability over the frequency range form DC to 80 GHz. The size of the MMIC LNA is 3.1mm$\times$2.4mm(7.44mm$^2$). The on wafer measured performance of the MMIC LNA, which agreed with the designed performance, showed the noise figure of less than 2.0 dB, and the gain of more than 26 dB, over frequency ranges from 22 GHz to 30 GHz.

  • PDF

Digital Low-Power High-Band UWB Pulse Generator in 130 nm CMOS Process (130 nm CMOS 공정을 이용한 UWB High-Band용 저전력 디지털 펄스 발생기)

  • Jung, Chang-Uk;Yoo, Hyun-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.784-790
    • /
    • 2012
  • In this paper, an all-digital CMOS ultra-wideband(UWB) pulse generator for high band(6~10 GHz) frequency range is presented. The pulse generator is designed and implemented with extremely low power and low complexity. It is designed to meet the FCC spectral mask requirement by using Gaussian pulse shaping circuit and control the center frequency by using CMOS delay line with shunt capacitor. Measurement results show that the center frequency can be controlled from 4.5 GHz to 7.5 GHz and pulse width is 1.5 ns and pulse amplitude is 310 mV peak to peak at 10 MHz pulse repetition frequency(PRF). The circuit is implemented in 0.13 um CMOS process with a core area of only $182{\times}65um^2$ and dissipates the average power of 11.4 mW at an output buffer with 1.5-V supply voltage. However, the core consumes only 0.26 mW except for output buffer.

A Ka-Band 8 W Power Amplifier Module Using 4-Way Waveguide Power Combiners with High Isolation (높은 격리도 특성의 4:1 도파관 전력합성기를 이용한 Ka-대역 8 W 전력 증폭 모듈)

  • Shin, Im-Hyu;Kim, Choul-Young;Lee, Man-Hee;Joo, Ji-Han;Lee, Sang-Joo;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.262-265
    • /
    • 2012
  • In this paper, a Ka-band 8 W power amplifier module with WR-28 waveguide input and output ports is implemented and measured using four 2 W power amplifier modules and 4:1 waveguide power combiners with high isolation of 25 dB at 35 GHz. The 2 W power amplifier modules are fabricated using waveguide-to-microstrip transitions and show output power of 32.5~33.3 dBm and power gain of 26.9~28.7 dB at 35 GHz. Four 2 W power amplifier modules are combined through 4:1 waveguide power combiners with resistive septum and the combined power shows 39.0 dBm(8 W) under 6 V drain bias and 39.6 dBm(9.1 W) under 6.5 V drain bias at 35 GHz.