• Title/Summary/Keyword: 26GHz

Search Result 351, Processing Time 0.022 seconds

Design of a Planar Antenna with Monopole-like Radiation Pattern for On-Body Communications (수직 모노폴 방사패턴을 갖는 인체표면 통신용 평면형 안테나 설계)

  • Kwon, Jaekwang;Woo, Seungmin;Tak, Jinpil;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.365-373
    • /
    • 2015
  • In this paper, a planar antenna with monopole-like radiation pattern for on-body communications is proposed. The proposed antenna consists of three split-rings(SR) to generate a monopole-like radiation characteristic. To account for the on-body application, the proposed antenna is designed to have a low-profile. The antenna has an overall dimensions of $0.29{\lambda}_0{\times}0.29{\lambda}_0{\times}0.008{\lambda}_0$ at 5.8 GHz industrial, scientific, and medical(ISM) band(5.725~5.875 GHz). To verify the body effect, a two-thirds muscle equivalent semi solid phantom is fabricated and used to measure the antenna performance. The 10-dB return loss bandwidth is 280 MHz(5.68~5.96 GHz) and the measured peak gain is 1.91 dBi.

A Study on Channel Access Mechanism of LTE for Coexistence with Wi-Fi on 5 GHz Unlicensed Spectrum (5 GHz 비면허대역 무선랜과의 상호공존을 위한 LTE 시스템의 채널접속방법에 관한 연구)

  • Um, Jungsun;Yoo, Sungjin;Park, Seungkwon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.374-380
    • /
    • 2015
  • With explosion of wireless traffic it is required to further investigate the technologies on acquiring available spectrum resources and on sharing frequency with existing users. In 3GPP, it is started to study on feasibility and functional requirement of LTE standard in order to extend cellular services offered on only licensed band to 5 GHz unlicensed band. Operating scenario on LTE in unlicensed band is focused on carrier aggregation with licensed band, and the coexistence with Wi-Fi services in 5 GHz band is concerned as a major requirement. For a single global solution framework for licensed assisted access to unlicensed spectrum, listen-before-talk(LBT) mechanism of European regulation for fair access to channel under the coexistence environments is currently examined in 3GPP. In this paper, we evaluate two types of LBT, frame based equipment and load based equipment, with considering LTE carrier aggregation feature and performances of file transferred time and throughput.

The design of Horn array antenna for 28GHz millimeter wave band (28GHz 밀리미터파대역 혼 어레이 안테나 설계)

  • Jin, Duck-Ho;Lee, Je-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1672-1678
    • /
    • 2022
  • In this paper, the relay antenna was designed in consideration of the performance of the 28GHz band 5G mobile communication relay horn antenna, such as radiation pattern and return loss. A horn array for 5G mobile communication repeater was designed by arranging the antenna elements in phase, and the performance was analyzed. Unlike conventional WCDMA (3G) and LTE (4G), in millimeter wave band communication, high path loss occurs between transmission and reception. In the design of a 5G millimeter wave horn antenna, antenna performance such as isolation and gain between antenna elements as well as gain and bandwidth of the antenna must be additionally considered. The antenna gain of the single horn antenna (1×1) and the array horn antenna (2×4) in the 28GHz band is about 10.44d Bi and 19.58dBi, respectively, and the return loss is designed to be less than -18dB. It has proven its validity and has been shown to be suitable for application to 5G mobile communication relay system.

Miniaturization of Planar Monopole Antenna with Parabolic Edge by Scaling Method (스케일링 기법을 이용한 포물선 엣지 형태의 평면형 모노폴 안테나의 소형화)

  • Chang, Tae-Soon;Kang, Sang-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.249-254
    • /
    • 2014
  • In this paper, minimizing of a parabolic edge planar monopole antenna by scaling method is presented. With the aid of a matching step and discontinuous CPW, the antenna easily adjusts the impedance matching. We used an FR4 dielectric substrate with a dielectric constant of 4.4. The dimensions of the antenna are $26mm{\times}31mm{\times}1.6mm$. A return loss value of more than 10dB was found in the 2.37GHz to 10.52GHz (8.15GHz) range of the antenna fed by the discontinuous CPW. The radiation pattern is about the same as that of the dipole antenna at all frequencies. Configuration elements of the antenna except feed part were reduced into the same rate. So, the size of the antenna was decreased and a broadband property was maintained. Therefore, the self-complementary characteristic of the antenna was confirmed. While satisfying the UWB band, having the smallest size in the antenna miniaturized by scaling;when scale was 0.6. The dimensions of the antenna are $15.6mm{\times}18.6mm{\times}1.6mm$. The return loss was more than 10 dB of the measured result in the range of 3.07GHz to 12.59GHz (9.52GHz).

Design of 100mW Frequency Tripler Operating at 7 GHz (7 GHz 대역 100 mW 주파수 3체배기의 제작)

  • Roh, Hee-Jung;Joo, Jae-Hyun;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • In this paper, a frequency tripler has been designed with 100mW medium-power using P-HEMT. It is designed to obtain 7.2 GHz frequency at the output that is an integer multiple of 2.4 GHz input frequency by using nonlinear device that produces 3rd harmonic. The frequency tripler is designed by using load-pull simulation. To suppress the 2nd and fundamental, notch filter is used for the frequency tripler. The tripler is designed to obtain about 21dBm output power with 15 dBm input, i.e., 6 dB conversion gain and the suppression of 20 dBc at fundamental, and 30 dBc at the second harmonics.

The Design of Ultra-broadband Power Amplifier using a Negative Feedback (부궤환을 이용한 광대역 전력증폭기 설계)

  • Lee, Han-Young;Kim, Dae-Jung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1572-1579
    • /
    • 2009
  • In this dissertation ultra-broadband power amplifier(UPA) was designed and fabricated using negative feedback technique. UPA was made of pre-amplifier, drive amplifier and power amplifier. Negative feedback technique was used to achieve ultra-broadband performance. Designed power amplifier has 30dB gain and 2W output power. The load-pull data of power amplifier for optimal power matching was extracted from the measured S-parameter. Fabricated PCB material, permittivity is 4.6 and thickness is 0.8mm, is FR4 and UPA was fabricated 3 modules for comparison of the simulated and measured results. Size of the fabricated pre-amplifier and drive amplifier module is 40mm'50mm'16mm. And from the experimental results, gain of the pre-amplifier module is 9.87dB at 2GHz and flatness is 0.63dB. Experimental result of the drive amplifier module is 10.97dB at 2GHz and flatness of that is 0.26dB. Test result of the power amplifier module is 10.71dB at 2GHz and flatness is 0.72dB. Total size of the power amplifier is 45mm'134mm'16mm. According to the test results, gain of the UPA is 28.98dB at 2GHz and flatness is 1.68dB. Output power was 32.098dBm at 2GHz, 32.154dBm at 1GHz and 31.273dBm at 100MHz.

Quadruple Band-Notched Trapezoid UWB Antenna with Reduced Gains in Notch Bands

  • Jin, Yunnan;Tak, Jinpil;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • A compact ultra-wide band antenna with a quadruple band-notched characteristic is proposed. The proposed antenna consists of a slotted trapezoid patch radiator, an inverted U-shaped band stop filter, a pair of C-shaped band stop filters, and a rectangular ground plane. To realize the quadruple notch-band characteristic, a U-shaped slot, a complementary split ring resonator, an inverted U-shaped band stop filter, and two C-shaped band stop filters are utilized in this antenna. The antenna satisfies the -10 dB reflection coefficient bandwidth requirement in the frequency band of 2.88-12.67 GHz, with a band-rejection characteristic in the WiMAX (3.43-3.85 GHz), WLAN (5.26-6.01 GHz), X-band satellite communication (7.05-7.68 GHz), and ITU 8 GHz (8.08-8.87 GHz) signal bands. In addition, the proposed antenna has a compact volume of $30mm{\times}33.5mm{\times}0.8mm$ while maintaining omnidirectional patterns in the H-plane. The experimental and simulated results of the proposed antenna are shown to be in good agreement.

A Study on Microstrip Array Antenna for LMDS Receiver with Corporate Feeding Network using Chebyshev Polynomials (Chebyshev 다항식을 이용한 병렬급전 구조를 가진 LMDS 수신용 마이크로스트립 배열 안테나에 관한 연구)

  • 문동권;안성훈;박명렬;정천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.827-833
    • /
    • 2002
  • In this paper, a microstrip array antenna for LMDS(Local Multipoint Distribution Service) receiver with corporate feeding network using Chebyshev polynomials is proposed to get the high gain and low side lobe level. The Chebyshev array method is proposed to design the corporate feeding network. LMDS uses 24~27 GHz microwave frequency band to send and receive broadband signals. Measured antenna shows 23.4 dBi gain, 24.96 GHz center frequency, -29.15 dB return loss and 1.2 GHz bandwidth.

A Novel Monopole Antenna with Two Arc-Shaped Strips for WLAN/WiMAX Application

  • Yoon, Joong Han;Ha, Sung Jae;Rhee, Young Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.6-13
    • /
    • 2015
  • In this paper, a novel monopole antenna for WLAN/WiMAX application is presented. The proposed antenna consists of two arc-shaped strips, a vertical strip, and a slot in the ground plane. In this study, a prototype of the proposed triple-band antenna was designed, fabricated, and tested. The quantitative and experimental results demonstrate that the proposed antenna satisfy the -10 dB impedance bandwidth requirement of 440 MHz for 2.4/2.5 GHz bands (from 2.26 to 2.70 GHz), 970 MHz for 3.5 GHz bands (from 3.27 to 4.24 GHz), and 870 MHz for the GHz bands (from 5.08 to 5.95 GHz), while simultaneously covering the WLAN and WiMAX bands. In addition, the presented triple-band antenna has an omnidirectional radiation pattern at all three frequency bands with an antenna gain of 4.45 dBi for the lowest band, 2.04 dBi for the middle band, and 3.98 dBi for the highest band.

An Optimal Design of a 19.05GHz High Gain 4X4 Array Antenna Using the Evolution Strategy (진화전략 기법을 이용한 19.05GHz 고이득 4X4 배열 안테나 최적설계)

  • Kim, Koon-Tae;Kwon, So-Hyun;Ko, Jae-Hyeong;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.811-816
    • /
    • 2011
  • In this paper, we propose a optimal design using the Evolution Strategy of a high gain $4\times4$ array antenna that have the resonant frequency of a 19.05GHz with 18.86GHz~19.26GHz bandwidth. The proposed array antenna structure is designed to be allocated equally electric power by microstrip patch power splitter. Thus the optimal array antenna with power splitter are determined by using an optimal design program based on the evolution strategy. To achieve this, an interface program between a commercial EM analysis tool and the optimal design program is constructed for implementing the evolution strategy technique that seeks a global optimum of the objective function through the iterative design process consisting of variation and reproduction. The simulation result of $4\times4$ array antenna is confirmed that the Gain is 19.36 dBi at resonance frequency 19.05GHz.