• Title/Summary/Keyword: 25-dihydroxyvitamin

Search Result 44, Processing Time 0.026 seconds

Inhibition of osteoclast formation by putative human cementoblasts

  • Kim, Mi-Ri;Yang, Won-Kyung;Grzesik, Wojciech;Ko, Hyun-Jung
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.113-116
    • /
    • 2008
  • Cementum is the mineralized tissue of the tooth. It is similar to bone in several aspects but it differs from bone. Human bone marrow stromal cells (BMSC) and human cementum derived cells (HCDC) (10,000 $cells/cm^2$) were plated in 6 well plates as feeder cells. The next day, mouse bone marrow cells (1.5 million $cells/cm^2$) were added. One group of these plates were incubated in serum-free conditioned medium (SFCM) generated from BMSC or HCDC supplemented with 2% FBS, parathyroid hormone (PTH), 1, 25 dihydroxyvitamin $D_3$ (Vit. $D_3$) and dexamethasone, or plain medium with the same supplements. Another group of plates were cocultured with BMSC or HCDC in plain medium supplemented with 2% FBS, PTH, Vit. $D_3$ and dexamethasone. Plates grown without SFCM or coculture were used as controls. After 10 days, the cells were stained for tartrate-resistant acid phosphatase (TRAP). BMSC were found to support osteoclast formation under normal conditions. This was inhibited however by both SFCM generated from HCDC and also by coculture with HCDC. In addition, HCDC themselves did not support osteoclast formation under any conditions. Our results thus indicate that HCDC do not support osteoclast formation in vitro and that soluble factor (s) from HCDC may inhibit this process. In addition, we show that this inhibition also involves an active mechanism that is independent of osteoprotegerin, a feature that may distinguish cementoblasts from other cells present in periodontium.

Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-κB activation in HK-2 cells

  • Park, Jung Sun;Choi, Hoon In;Bae, Eun Hui;Ma, Seong Kwon;Kim, Soo Wan
    • The Korean journal of internal medicine
    • /
    • v.34 no.1
    • /
    • pp.146-155
    • /
    • 2019
  • Background/Aims: Indoxyl sulfate (IS) is a uremic toxin and an important causative factor in the progression of chronic kidney disease. Recently, paricalcitol (19-nor-1,25-dihydroxyvitamin D2) was shown to exhibit protective effects in kidney injury. Here, we investigated the effects of paricalcitol treatment on IS-induced renal tubular injury. Methods: The fluorescent dye 2',7'-dichlorofluorescein diacetate was used to measure intracellular reactive oxygen species (ROS) following IS administration in human renal proximal tubular epithelial (HK-2) cells. The effects of IS on cell viability were determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and levels of apoptosis-related proteins (Bcl-2-associated protein X [Bax] and B-cell lymphoma 2 [Bcl-2]), nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65, and phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) were determined by semiquantitative immunoblotting. The promoter activity of $NF-{\kappa}B$ was measured by luciferase assays and apoptosis was determined by f low cytometry of cells stained with f luorescein isothiocyanate-conjugated Annexin V protein. Results: IS treatment increased ROS production, decreased cell viability and induced apoptosis in HK-2 cells. IS treatment increased the expression of apoptosis-related protein Bax, decreased Bcl-2 expression, and activated phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt. In contrast, paricalcitol treatment decreased Bax expression, increased Bcl-2 expression, and inhibited phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt in HK-2 cells. $NF-{\kappa}B$ promoter activity was increased following IS, administration and was counteracted by pretreatment with paricalcitol. Additionally, flow cytometry analysis revealed that IS-induced apoptosis was attenuated by paricalcitol treatment, which resulted in decreased numbers of fluorescein isothiocyanate-conjugated Annexin V positive cells. Conclusions: Treatment with paricalcitol inhibited IS-induced apoptosis by regulating MAPK, $NF-{\kappa}B$, and Akt signaling pathway in HK-2 cells.

THE EFFECT OF RHBMP-2 IN HUMAN BONE MARROW-DERIVED STEM CELLS AS OSTEOGENIC INDUCERS (사람의 골수 줄기 세포로부터의 골세포 분화 과정에서 BMP-2가 미치는 영향과 그에 따른 분화 유전자의 발현 비교 연구)

  • Kim, In-Sook;Zhang, Yu-Lian;Cho, Tae-Hyung;Lee, Kyu-Back;Park, Yong-Doo;Rho, In-Sub;Weber, F.;Hwang, Soon-Jung;Kim, Myung-Jin;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.1
    • /
    • pp.16-23
    • /
    • 2005
  • It is commonly acknowledged that bone morphogenic protein (BMP-2) functions as a potential osteogenic inducer in bone formation. Recently, several papers reported that bone marrow-derived stem cell (BMSC) from human is not responsive to BMP-2 in comparison to high capacity of BMP-2 in the osteoinduction of stromal cell derived from bone marrow of rodent animals such as rat or mouse. In this study, we characterized BMSC derived from 11 years old donor for the responsiveness to rhBMP-2, dexamethasone (Dex) and 1,25-dihydroxyvitamin D (vitamin D), in order to analyze their function in the early osteogenesis. The effect of over mentioned agents was evaluated by means of assessing alkaline phosphatase (ALP) activity/staining, RT-PCR analysis and von Kossa staining. In addition, we analyzed the meaning of expressed several osteoblastic markers such as alkaline phosphatase, collagen typeI, osteopontin, bone sialoprotein and osteocalcin with relation to either differentiation or mineralization. Only in the presence of Dex, human BMSC could commit osteoblastic differentiation and matrix mineralization, and either BMP-2 or vitamin D treatment was not able to induce. But BMP-2 or Vitamin D showed potential synergy effect with Dex. ALP and bone sialoprotein were clearly expressed in response of Dex treatment compared to weak expression of osteopontin in early osteogenesis. Therefore, we expect that this study will contribute partly to elucidiating early osteogenesis mechanism in human, but variations among bone marrow donors must be considered through further study.

Eight cases of incidentally diagnosed as subclinical rickets (우연히 발견된 무증상 구루병 8예)

  • Seo, Ji-Young;Kim, Curie;Lee, Hee-Woo;Ahn, Young-Min
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.8
    • /
    • pp.812-819
    • /
    • 2008
  • Purpose : Vitamin D plays a key role in bone mineralization of the skeleton and vitamin D deficiency can lead to rickets. It is well known that vitamin D deficiency is common in breast fed infants. Of these patients, clinically, some have no signs of rickets, but laboratory and radiographic findings are diagnostic for vitamin D deficiency rickets (subclinical vitamin D deficiency rickets). The purpose of this study is to clarify current causes and ways to prevent this disease. Methods : We reviewed the clinical and laboratory characteristics of children who were incidentally diagnosed as subclinical rickets during treatment of other disease such as pneumonia, gastroenteritis, urinary tract infection at Eulji Hospital, Seoul, Korea from March, 2003 to July 2007. Results : Eight patients (six boys and two girls) were diagnosed with subclinical vitamin D deficiency rickets. The mean age of the patients was $12.6{\pm}5.8months$, and they were diagnosed from January to July. The associated diseases were pneumonia, urinary tract infection, acute gastroenteritis, and iron deficiency anemia. All patients were breast-fed. Two showed growth failure. The mean serum alkaline phosphatase was $1995.8{\pm}739.5IU/L$, the mean calcium count was $9.5{\pm}0.6mg/dL$, and the mean phosphorus content was $3.6{\pm}1.5mg/dL$. The mean intact parathyroid hormone was $214.8{\pm}155.9pg/mL$ (reference range, 9-65), the mean 1,25-dihydroxyvitamin D was $82.4{\pm}49.3pg/mL$ (reference range, 2070), and the mean 25-hydroxyvitamin D was $29.6{\pm}10.6ng/mL$ (reference range, 1030). A radiographic examination showed cupping, fraying, and flaring of metaphyses in all patients. Six patients were administered calcitriol (400 IU/day) for three months. A consequent radiographic and laboratory examination showed improvement. The first two patients were initially diagnosed with metaphyseal dysplasia, without the detection of vitamin D deficiency and they spontaneously improved without vitamin D supplements. However, two years later, they showed mild scoliosis and metaphyseal dysplasia, respectively. Conclusion : Breast-feeding without supplementation involves high risk of vitamin D deficiency. Some infants may also develop rickets; therefore, such groups should be considered for vitamin D supplementation.