• Title/Summary/Keyword: 20S proteasome

Search Result 18, Processing Time 0.028 seconds

Regulation of Protein Degradation by Proteasomes in Cancer

  • Jang, Ho Hee
    • Journal of Cancer Prevention
    • /
    • v.23 no.4
    • /
    • pp.153-161
    • /
    • 2018
  • Imbalance of protein homeostasis (proteostasis) is known to cause cellular malfunction, cell death, and diseases. Elaborate regulation of protein synthesis and degradation is one of the important processes in maintaining normal cellular functions. Protein degradation pathways in eukaryotes are largely divided into proteasome-mediated degradation and lysosome-mediated degradation. Proteasome is a multisubunit complex that selectively degrades 80% to 90% of cellular proteins. Proteasome-mediated degradation can be divided into 26S proteasome (20S proteasome + 19S regulatory particle) and free 20S proteasome degradation. In 1980, it was discovered that during ubiquitination process, wherein ubiquitin binds to a substrate protein in an ATP-dependent manner, ubiquitin acts as a degrading signal to degrade the substrate protein via proteasome. Conversely, 20S proteasome degrades the substrate protein without using ATP or ubiquitin because it recognizes the oxidized and structurally modified hydrophobic patch of the substrate protein. To date, most studies have focused on protein degradation via 26S proteasome. This review describes the 26S/20S proteasomal pathway of protein degradation and discusses the potential of proteasome as therapeutic targets for cancer treatment as well as against diseases caused by abnormalities in the proteolytic system.

Proteasome Inhibitors Affect Appressorium Formation and Pathogenicity of the Rice Blast Fungus, Magnaporthe oryzae

  • Wang, Yiming;Kim, Sang-Gon;Wu, Jingni;Yu, Seok;Kang, Kyu-Young;Kim, Sun-Tae
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.225-231
    • /
    • 2011
  • Previously, we identified the 20S proteasome ${\alpha}$-subunit of Magnaporthe oryzae (M. oryzae) induced during appressorium formation, and detected an increase in multiple protein ubiquitination during the early appressorium formation process (Kim et al., 2004). In this study, we further attempted to determine whether the proteasome is involved in the appressorium formation of M. oryzae both in vitro and in planta, using proteasome inhibitors. A significant increase in 20S proteasome during fungal germination and appressorium formation was observed using Western blot analysis with 20S proteasome antibody, demonstrating that proteasome-mediated protein degradation was involved in appressorium formation. Pharmacological analysis using proteasome inhibitors, MG-132, proteasome inhibitor I (PI) and proteasome inhibitor II (PII) revealed that germination and appressorium formation were delayed for 4 to 6 h on rice leaf wax-coated plates. Similarly, the treatment of proteasome inhibitors with fungal conidia on the rice leaf surface delayed appressorium formation and host infection processes as well. Additionally, fungal pathogenicity was strongly reduced at 4 days' postfungal infection. These data indicated that the fungal 20S proteasome might be involved in the pathogenicity of M. oryzae by the suppression of germination and appressorium formation.

Developmental Changes of Proteolvtic Activities of 26S Protease Complex and 20S Proteasome in Chick Embryonic Muscle (계배 근조직 발달과정에서의 26S 단백질 분해효소 복합체 및 20S proteasome의 단백질 분해활성의 변화)

  • 이도희;심규석
    • The Korean Journal of Zoology
    • /
    • v.37 no.3
    • /
    • pp.324-330
    • /
    • 1994
  • The multicatalvtic 205 proteasome consisting of 12-15 subunits of 22-35 kDa is the catalytic core of the ATP/ubiquitin-dependent 26S protease complex that also is comprised of multiple subunits of 22-110 KDa. In order to determine whether the proteolvtic activities change during muscle development, the enzyme preparations were obtained from 11-, 14- and 17-day old chick embryonic muscle using a BioGel A-1.5m column. The 26S complex preparation from 14- or 17-day old muscle hvdr olvz e d both N -s uccinvl- Le u- Le u -Val-Tvr-7- amido -4- methvlco umarin ( Suc- LLVY- AMC) and ubiquitin-Ivsozvme conjugates about 50% as well as that from 11-day old muscle. In addition, the activity of 20S proteBsome against Suc-LLVY-AMC also decreased by about 20-30%. However, the protein level of 265 complex remained constant during the entire development period, while that of 205 proteasome increased 5- to 6-fold, as analyzed by nondenaturins polyacrvlamide gel elenrophoresis followed by immunoblot analysis using the antibodies raised against the purified enzymes. Thus, the specific activity of 20S proteasome against the peptide must decrease rather dramatically during the muscle development. These results suggest that the development-dependent changes in the proteolytic activities of both 20S proteasome and 26S protease complect from embryonic muscle are due to alterations in the expression of certain subunits in the enzvmes that are responsible for their specific cataIVtic functions but not to overall changes in the enzyme amounts.

  • PDF

Synthesis and Biological Evaluation of Tetrapeptide Ketones as Reversible 20S Proteasome Inhibitors

  • Latif, Muhammad;Jung, Myoung Eun;Lee, Kwangho;Choi, Gildon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3571-3575
    • /
    • 2014
  • Proteasome, a multicatalytic protease complex, has been validated as a promising therapeutic target in oncology. Carfilzomib (Kyprolis$^{(R)}$), a tetrapeptide epoxyketone, irreversibly inhibits the chymotrypsin-like (CT-L) activity of the proteasome and has been recently approved for multiple myeloma treatment by FDA. A chemistry effort was initiated to discover the compounds that are reversibly inhibit the proteasome by replacing the epoxyketone moiety of carfilzomib with a variety of ketones as reversible and covalent warheads at the C-terminus. The newly synthesized compounds exhibited significant inhibitory activity against CT-L activity of the human 20S proteasome. When the compounds were tested for cancer cell viability, 14-8 was found to be most potent in inhibiting Molt-4 acute lymphoblastic leukemia cell line with a $GI_{50}$ of $4.4{\mu}M$. Cytotoxic effects of 14-8 were further evaluated by cell cycle analysis and Western blotting, demonstrating activation of apoptotic pathways.

CHIP promotes the degradation of mutant SOD1 by reducing its interaction with VCP and S6/S6' subunits of 26S proteasome

  • Choi, Jin-Sun;Lee, Do-Hee
    • Animal cells and systems
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Previously we showed that CHIP, a co-chaperone of Hsp70 and E3 ubiquitin ligase, can promote the degradation of mutant SOD1 linked to familial amyotrophic lateral sclerosis (fALS) via a mechanism not involving SOD1 ubiquitylation. Here we present evidence that CHIP functions in the interaction of mutant SOD1 with 26S proteasomes. Bag-1, a coupling factor between molecular chaperones and the proteasomes, formed a complex with SOD1 in an hsp70-dependent manner but had no direct effect on the degradation of mutant SOD1. Instead, Bag-1 stimulated interaction between CHIP and the proteasome-associated protein VCP (p97), which do not associate normally. Over-expressed CHIP interfered with the association between mutant SOD1 and VCP. Conversely, the binding of CHIP to mutant SOD1 was inhibited by VCP, implying that the chaperone complex and proteolytic machinery are competing for the common substrates. Finally we observed that mutant SOD1 strongly associated with the 19S complex of proteasomes and CHIP over-expression specifically reduced the interaction between S6/S6' ATPase subunits and mutant SOD1. These results suggest that CHIP, together with ubiquitin-binding proteins such as Bag-1 and VCP, promotes the degradation of mutant SOD1 by facilitating its translocation from ATPase subunits of 19S complex to the 20S core particle.

RNAi Suppression of RPN12a Decreases the Expression of Type-A ARRs, Negative Regulators of Cytokinin Signaling Pathway, in Arabidopsis

  • Ryu, Moon Young;Cho, Seok Keun;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.375-382
    • /
    • 2009
  • The 26S proteasome is a 2-MDa complex with a central role in protein turn over. The 26S proteasome is comprised of one 20S core particle and two 19S regulatory particles (RPs). The RPN12a protein, a non-ATPase subunit of the 19S RP, was previously shown to be involved in cytokinin signaling in Arabidopsis. To further investigate cellular roles of RPN12a, RNAi transgenic plants of RPN12a were constructed. As expected, the 35S:RNAi-RPN12a plants showed cytokinin signaling defective phenotypes, including abnormal formation of leaves and inflorescences. Furthermore, RNAi knock-down transgenic plants exhibited additional unique phenotypes, including concave and heart-shape cotyledons, triple cotyledons, irregular and clustered guard cells, and defects in phyllotaxy, all of which are typical for defective cytokinin signaling. We next examined the mRNA level of cytokinin signaling components, including type-A ARRs, type-B ARRs, and CRFs. The expression of type-A ARRs, encoding negative regulators of cytokinin signaling, was markedly reduced in 35S:RNAi-RPN12a transgenic plants relative to that in wild type plants, while type-B ARRs and CRFs were unaffected. Our results also indicate that in vivo stability of the ARR5 protein, a negative regulator of cytokinin signaling, is mediated by the 26S proteasome complex. These results suggest that RPN12a participates in feedback inhibitory mechanism of cytokinin signaling through modulation of the abundance of ARR5 protein in Arabidopsis.