References
- Baumeister, W., Walz, J., Zuhl, F. and Seemuller, E. 1998. The proteasome: paradigm of self compartmentalizing protease. Cell 92:367-380. https://doi.org/10.1016/S0092-8674(00)80929-0
- Clague, M. J. and Urbe, S. 2010. Ubiquitin: same molecule, different degradation pathways. Cell 143:682-685. https://doi.org/10.1016/j.cell.2010.11.012
- Dahlmann, B., Kopp, F., Kuehn, L., Niedel, B., Pfeifer, G., Hegerl, R. and Baumeister, W. 1989. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett. 251:125-131. https://doi.org/10.1016/0014-5793(89)81441-3
- Dick, S. 1979. Growth of Erysiphe germinis on artificial membranes. Physiol. Plant Pathol. 15:219-221. https://doi.org/10.1016/0048-4059(79)90071-7
- Dickinson, S. 1977. Studies in the physiology of obligate parasitism X. induction of responses to a thigmotropic stimulus. Phytopathol. Z. 89:97-115. https://doi.org/10.1111/j.1439-0434.1977.tb02847.x
- Genin, E., Reboud-Ravaux, M. and Vidal, J. 2010. Proteasome inhibitors: recent advances and new perspectives in medicinal chemistry. Curr. Top. Med. Chem. 10:232-256. https://doi.org/10.2174/156802610790725515
- George, N. D. and Clive, A. S. 1999. The proteasome, a novel protease regulated by multiple mechanisms. J. Biol. Chem. 27:22123-22126.
- Gilbert, R. D., Johnson, A. M. and Dean, R. A. 1996. Chemical signals responsible for appressorium formation in the rice blast fungus. Physiol. Mol. Plant Pathol. 48:335-346. https://doi.org/10.1006/pmpp.1996.0027
- Hoch, H. C. and Staples, R. C. 1987. Structural and chemical changes among the rust fungi during appressorium development. Annu. Rev. Phytopathol. 25:231-247. https://doi.org/10.1146/annurev.py.25.090187.001311
- Howard, R. J., Ferrari, M. A., Roach, D. H. and Money, N. P. 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. U. S. A. 88:11281-11284. https://doi.org/10.1073/pnas.88.24.11281
- Irie, T., Matsumura, H., Terauchi, R. and Saitoh, H. 2003. Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation. Mol. Genet. Genomics 270:181-189. https://doi.org/10.1007/s00438-003-0911-6
- Jelitto, T. C., Page, H. A. and Read, N. D. 1994. Role of external signals in regulating the pre-penetration phase of infection by the rice blast fungus, Magnaporthe grisea. Annu. Rev. Microbiol. 50:491-512.
- Oku, M. and Sakai, Y. 2010. Peroxisomes as dynamic organelles: autophagic degradation. FEBS J. 277:3289-3294. https://doi.org/10.1111/j.1742-4658.2010.07741.x
- Park, J. Y., Jin, J., Lee, Y. W., Kang, S. and Lee, Y. H. 2009. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice. Plant Physiol. 149:474-486. https://doi.org/10.1104/pp.108.129536
- Kawahara, H. and Yokosawa, H. 1992. Cell cycle-dependent change of proteasome distribution during embryonic development of the ascidian Halocynthia roretzi. Dev. Biol. 151:27-33. https://doi.org/10.1016/0012-1606(92)90210-8
- Kershaw, M. J. and Talbot, N. J. 2009. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc. Natl. Acad. Sci. U. S. A. 106:15967-15972. https://doi.org/10.1073/pnas.0901477106
- Kim, S. T., Yu, S., Kim, S. G., Kim, H. J., Kang, S. Y., Hwang, D. H., Jang, Y. S. and Kang, K. Y. 2004. Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation. Proteomics 4:3579-3587. https://doi.org/10.1002/pmic.200400969
- King, R. W., Deshaies, R. J., Peters, J. M. and Kirschner, M. W. 1996. How proteolysis drives the cell cycle. Science 274: 1652-1659. https://doi.org/10.1126/science.274.5293.1652
- Kurepa, J., Wang, S., Li, Y. and Smalle, J. 2009. Proteasome regulation, plant growth and stress tolerance. Plant Signal Behav. 4:924-927. https://doi.org/10.4161/psb.4.10.9469
- Lee, Y. H. and Dean, R. A. 1993. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell 5:693-700. https://doi.org/10.1105/tpc.5.6.693
- Lee, Y. H. and Dean, R. A. 1994. Hydrohobicity of contact surface induces appressorium formation in Magnaporthe grisea. FEMS Microbiol. Lett. 115:71-75. https://doi.org/10.1111/j.1574-6968.1994.tb06616.x
- Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W. and Huber, R. 1995. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268:533-539. https://doi.org/10.1126/science.7725097
- Marian, O., Christopher, C., Eleuteri, A. M., Kohanski, R., Kam, C. M. and Powers, J. C. 1997. Reactions of [14C]-3,4-Dichloroisocoumarin with subunits of pituitary and Spleen Multicatalytic Proteinase Complexes (proteasome). Biochemitry. 36: 13946-13953. https://doi.org/10.1021/bi970666e
- Nandi, D., Tahiliani, P., Kumar, A. and Chandu, D. 2006. The ubiquitin-proteasome system. J. Biosci. 31:137-55. https://doi.org/10.1007/BF02705243
- Nguyen, L. N., Bormann, J., Le, G. T., Stärkel, C., Olsson, S., Nosanchuk, J. D., Giese, H. and Schäfer, W. 2011. Autophagy- related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Fungal Genet. Biol. 48:217-224. https://doi.org/10.1016/j.fgb.2010.11.004
- Rock, L. and Goldberg, A. L. 1999. Degradation of cell proteins and the generation of MHC class 1-presented peptides. Annu. Rev. Immunol. 17:739-779. https://doi.org/10.1146/annurev.immunol.17.1.739
- Shah, S. A., Potter, M. W. and Callery, M. P. 2001. Ubiquitin proteasome pathway: implications and advances in cancer therapy. Surg. Oncol. 10:43-52. https://doi.org/10.1016/S0960-7404(01)00018-4
- Skaar, J. R. and Pagano, M. 2009. Control of cell growth by the SCF and APC/C ubiquitin ligases. Curr. Opin. Cell Biol. 21:816-824. https://doi.org/10.1016/j.ceb.2009.08.004
- Veneault-Fourrey, C., Barooah, M., Egan, M., Wakley, G. and Talbot, N. J. 2006. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312:580-583. https://doi.org/10.1126/science.1124550
- Xiao, J. Z., Watanabe, T., Kamakura, T., Ohshima, A. and Yamaguchi, I. 1994. Studies on cellular differentiation of Magnoporthe grisea physicochemical aspects of substratum surface in relation to appressorium formation. Physiol. Mol. Plant Pathol. 44:227-236. https://doi.org/10.1016/S0885-5765(05)80007-4
- Yanagawa, Y., Hasezawa, S., Kumagai, F., Oka, M., Fujimuro, M., Naito, T., Makino, T., Yokosawa, H., Tanaka, K., Komamine, A., Hashimoto, J., Sato, T. and Nakagawa, H. 2002. Cell-cycle dependent dynamic change of 26S proteasome distribution in tobacco BY-2 cells. Plant Cell Physiol. 43:604-613. https://doi.org/10.1093/pcp/pcf072
- Yim, K. O. and Bradford, K. J. 1998. Callose deposition is responsible for apoplastic semipermeability of the endosperm envelope of muskmelon seeds. Plant Physiol. 118:83-90. https://doi.org/10.1104/pp.118.1.83
Cited by
- Comparison of Different Protein Extraction Methods for Gel-Based Proteomic Analysis of Ganoderma spp. vol.35, pp.2, 2016, https://doi.org/10.1007/s10930-016-9656-z